Study on mangrove associated estuarine waters of Northeastern Bay of Bengal reveals potential diatom indicators of dissolved inorganic compounds

Abhishek Mukherjee, Subhajit Das, Sabyasachi Chakraborty and Tarun Kumar De*

Department of Marine Science, Calcutta University, 35, B.C. Road, Kolkata-700 019, India. *Email: abmsws@gmail.com, tarunde@yahoo.co.in.

Abstract. An extensive study (2011 and 2012) was performed to narrow down certain diatom species with bioindicator potentials of highly dynamic and well mixed tropical estuary. The Hooghly Estuary in the Northeastern coast of Bay of Bengal was chosen as the study sites. The comparison between mangrove impoverished and mangrove dominated estuarine rivers revealed intriguing variation in the phytoplankton species composition in response to the dissolved nitrate, phosphate and silicate concentrations, thus forming the kernel of the study by focusing on certain species with greater abundances pointing to their better adaptability and responsiveness to biotic/abiotic parameters in a well mixed estuary. *Coscinodiscus hyalinus*, *Coscinodiscus radiatus*, *Lioloma elongata*, *Skeletonema costatum*, *Synedra crystallinum*, *Thalassionema frauenfeldtii* and *Thalassionema nitzschioides* have expressed better as bioindicators.

Keywords: Bioindicator, *Coscinodiscus*, *Skeletonema*, *Synedra*, *Thalassionema*, Hooghly Estuary.

Received June 6, 2015

Accepted June 16, 2015

Released June 30, 2015

Open Acess Full Text Article

Introduction

Diatoms microscopic, are unicellular, eukaryotic algae that are always in full contact with their immediate ambient environment (Smol and Stromer, 2010) and react to the changes in their environment in the most sensitive way. The diatoms owing to their siliceous frustules are entombed in sediments for many years, a trait which has rendered them useful for studying and interpreting ecological conditions of bygone eras. The ubiquitous distribution of the diatoms, their high specific diversity and their siliceous frustules, all enable diatoms to function as sound environmental indicators (Stevenson and Pan, 1990). "It is estimated that diatoms account for 40% of the total marine production of carbon (Nelson et al., 1995). The chief inorganic compounds which govern the growth and

proliferation of the diatoms are nitrate, phosphate and silicate apart from carbon.

Nitrogen is considered to be one the most significant growth constraints for phytoplanktons. Around 70% of nitrogen assimilation governed is by the phytoplankton on a global scale and nitrate has been most widely studied as the chief nitrogen source of the phytoplankton. Its concentration ranges from undetectable to 50 μ mol.L⁻¹ in oceans and increase manifolds in the coastal waters as a result of riverine run-off and upwelling. Nitrate, in coastal waters, normally ranges within 500 μ mol.L⁻¹. Orthophosphate is the only form of phosphorus that autotrophs are able to assimilate. In contrary to the freshwater environment, in estuarine and marine environments phosphate plays the most important role of a growth limiting nutrient. More conclusive evidence for the effect of

ISSN 2358-2731/BJBS-2015-0123/2/3/16/168

phosphorous on growth rate has been reported using culture of certain algal species (Fuhs, 1971). The diatom cell walls are silicified and known as frustules. They generally consist of hydrated amorphous silica with empirical formula (SinO2n-(nx/2)) OH_{nx}), with x \leq 4. According to Tréguer et al. (1995), the use of silicon by diatoms dominates the biogeochemical cycling of Si in the sea, with each atom of Si weathered from land passing through a diatom on average 39 times before burial in the sea. Cell wall silicification and silicic acid transport are tightly coupled to the cell cycle, which results in a dependency in the extent of silicificationn on growth rate. According to Martin-Jézéquel et al. (2000) silica dissolution is an important part of diatom cellular silicon metabolism, because dissolution must be prevented in the living cell, and because much of the raw material for mineralization in natural assemblages is supplied by dissolution of dead cells.

Diatom indicators have been documented from time to time in aquatic environments such as lakes and lagoon but, hardly any substantial data exist on the use of particular diatom species as bioindicators of eutrophic conditions in well mixed tropical estuarine ecosystems. Both mangrove associated water bodies and rivers without apparent mangrove vegetation on their flanks harbor unique microalgal communities, dominated mostly by diatoms in estuarine ecosystems. Comparative accounts from their natural set ups and their responses towards various physiochemical conditions may be useful in revealing probable species with affinity towards a certain condition. The primary objective of the study was to delineate the response of phytoplanktons to changes in the inorganic nutrients so that few species can be demarcated with potential of being used as bioindicators to nutrient enriched environments in well mixed tropical estuaries.

Materials and methods

Study area

The sampling stations were Kachuberia (21° 51' 39" N, 88° 08' 37" E), Chemaguri (21° 40' 43" N, 88°07' 28"E) and Gangasagar (21° 38' 00" N,

88° 05' 00" E) located in the Hooghly Estuary (Figure 1). The selection of these locales were mainly based on their clearly discernible salinity differences and mangrove vegetation covers, ranging from region with high riverine influence (Kachuberia) as mangrove impoverished zone, to brackish water regions and mangrove vegetation (Chemaguri) and marine dominated region (Gangasagar) with sparse mangrove cover. Three stations at Chemaguri were chosen to be sites with vegetation dominance mangrove (21° 40' 43" N 88° 07' 28" E, and 21° 40' 48" N 88° 09' 04"'E, and and 21° 40' 57.54" N and 88° 09' 09.49" E]. Results from mangrove dominated regions and mangrove impoverished regions have been grouped under the two headings and average data from the stations under respective groups has been used for the present manuscript. The Hooghly Estuary is the first deltaic offshoot of the River Ganges. It is a coastal plain estuary and lies 21° 32' Napproximately between 22° 40' N and 88° 05' E-89° 00' E and the lower 80 km of the estuary flows through the western part of the marshy coastal areas covered with thick mangrove vegetation and is known worldwide as the Sundarbans.

Three primary sampling stations were selected due to their variation in salinity, ranging from river dominated (Kachuberia), brackish water (Chemaguri) and up to marine influenced (Ganga Sagar). The entire Hooghly Estuary was devastated by a severe tropical super cyclone and the study performed on it should help to find valuable information about the effect of such a catastrophe on microphytoplanktons population of a well mixed estuary (Hooghly Estuary is one of the most important part of the largest deltaic system in the World).

The northeast coast of the Bay of Bengal is highly irregular near the landocean boundary and is dissected by a large number of strewing rivulets, creeks and tributaries. The River Hooghly is the main artery of the River Ganges and is morphed into swampy marshy lands near its estuarine gateway to the Bay of Bengal, with severe fluvial deposits. The Hooghly Estuary exchanges flow with the Bay of Bengal near the Sagar Island and its tidal

Figure 1. Map of the study sites with sampling stations (black blotches).

domain for nearly 250 km. the mouth of the estuary has a funnel shape and the predominant tidal regime is semidiurnal in nature. The vertical tide range at the mouth varies from 5.2 m during the spring tide to 1.8 m during the neap period. This is a well mixed estuary due to the intense tidal and wave actions with a meso-macrotidal setting (2.5-7 m amplitude). Mean current velocities are between 108 cm.s⁻¹ and 117 cm.s⁻¹ during high and low tides respectively. The climate of this region is characterized by the southwestern monsoon (July-October), northeast monsoon or post (November-February) monsoon and premonsoon (March-June); at least 70-80% of the rainfall occurs during the summer monsoon (SW monsoon), resulting in the high river discharge (2,952-11,897 m³.s⁻¹),

which gradually diminishes to 900- $1500 \text{ m}^3 \text{s}^{-1}$ during non-monsoonal months (Biswas et al., 2004; Mukhopadhyay et al., 2006).

Data collection and sample analysis

Monthly data of surface water salinity, air temperature, water temperature, wind speed, dissolved oxygen, primary productivity and essential nutrients (nitrate, phosphate and silicate) were recorded and monthly phytoplanktonic sampling was performed from study sites for a total period of two years, 2011 and 2012. The essential meteorological back ground data of the days of the collections were procured from the usage of Shimadzu Weather Station. Salinity of the water was first

Figure 2. Seasonal fluctuations in the three chief nutrient parameters viz. nitrate-nitrogen, phosphate-phosphorus and silicate in mangrove impoverished and mangrove dominated waters of the Hooghly Estuary (error bars of the selected macronutrients with 5% value).

measured with the aid of refractometer and then estimated using argentometric method and the factor corrected values were put in.

Water sample for the estimation purposes was collected using the Niskin water sampler. For the estimation of phosphate, nitrate and silicate, the standard methods were followed (Grasshoff et al., 1983). Gross primary production and community respiration were measured in situ using the light and dark bottle method (Strickland and Parsons, 1972). The phytoplankton (diatom) sampling was performed using а handheld net [phytoplankton net (bolting silk no. 30. mesh size 20 µm) equipped with flow meter] from different stations in the Hooghly Estuary. The mesh size was fixed for the microphytoplanktons and not the nanoplanktons to maintain a certain degree of separation during the study and also due to the reason that increased turbidity rendered the usage of smaller mesh size impossible due to large quantities of silt clogging. The chief gear used in this purpose was country boats to ensure the least disturbance of the prevalent population of phytoplanktons. After the collection, the phytoplankton concentrates were transferred into 25 mL Tarson

polythene containers and 4% formalin along with lugol's iodine were used as preservatives depending on the need of clarification and specific preferences. The formalin is a very good agent for clearing cells off organic debris but it doesn't stain cells hence it is hard to discriminate between living, viable cells from dead, resuspended ones. The samples were then analyzed under light microscopes, bright field microscopes and phase contrast microscopes for their accurate and proper identification, using proper literature (effective and valid) (Desikachary, 1986-1989: Hasle and Svvertsen, 1997: Al-Kandari et al., 2009).

Another method for the quantification of phytoplanktons was used where 1 L water samples in triplicates were collected; each preserved with lugol's iodine solution and buffered formalin. After 72 h of sedimentation, the supernatant was filtered off (20 μ m) and the phytoplanktons (diatoms, flagellates and dinoflagellates) were enumerated in a Sedgwick Rafter counting chamber. The data generated from both the methods were tallied and the deviation was negligible ensuring accurate enumeration.

Data compilation and statistical analyses

All data tabulation and compilation were accomplished using the MS-Excel software but for statistical analyses, the 'add-in' of Excel, the XIstat software was used and the principal component analysis tool of the data analysis package of the XIstat 12 was employed to deduce the Pearson Correlation Matrix.

Result

The study was performed with the objective of finding diatom species with bioindicator potentials in well mixed estuarine waters of Hooghly Estuary (Figure 1). Water samplings near mangrove mudflat (mangrove dominated) and water bodies with no apparent mangroves in sight (mangrove impoverished) were chosen due to their differences in physico-chemical parameters and may provide a wider platform for the diatom species to respond to, in terms of indicating a particular condition. The Figure 2 and the Table 1 summarize the comparative variations in water quality parameters such as nutrients (nitrate-nitrogen, phosphate-phosphorus and silicate), salinity, dissolved oxygen, primary, air and water temperatures, wind speed etc.

From Table 1, it is quite obvious that water quality parameters which mainly govern any phytoplankton (diatom) population assemblages in any aquatic environment are comparatively different on average in mangrove dominated and mangrove impoverished. Figure 2 depicts the variation in nutrients where it can be observed that among the three chief nutrients taken into consideration, dissolved phosphate actually followed a somewhat different pattern of seasonal fluctuation.

Tables 2, 3 and 4 comprehensively describes the seasonal comparative variations (in the relative abundances as well as the composition of the phytoplanktons) in the phytoplankton population (mainly diatoms) sampled from both mangrove dominated and mangrove impoverished water bodies of the Hooghly Estuary. The number of phytoplankton species in general was higher in mangrove dominated regions as compared to mangrove impoverished sampling stations in all the three seasons. Again the relative abundances of phytoplankton species observed in the mangrove dominated region were found to be comparatively on the higher side as well.

The Table 5 depicts the species which had appeared in both the years of the study (2011 and 2012) in at least one of the three seasons, with few appearing in all the three. These phytoplanktons (diatoms) can best serve as indicators to the changes in their ambient environments. Species such as Coscinodiscus radiatus, Coscinodiscus marginatus, Coscinodiscus lineatus. Ditylum brightwellii, Skeletonema costatum, Thalassionema frauenfeldtii, Thalassionema nitzschioides. Svnedra crystallinum etc are of more significance since they have been observed in both the years as well as all the three seasons, hence shall be able to reflect the effects of the the seasonal changes in selected physicochemical parameters on their composition and abundances and thus can be of greater use as bioindicators of well mixed tropical estuaries such as the one being dealt with presently. A very curious feature that can be observed from Table 5 is, almost all the species exhibited higher relative abundances in mangrove dominated waters than their abundances recorded from mangrove impoverished waters. Few species of Coscinodiscus, Thalassionema however showed much higher etc. abundances in mangrove impoverished waters.

correlation was performed А among relative abundance values of those species of phytoplanktons (diatoms) which were documented in both the years of the study, on all three seasons along with the chief nutrient parameters which is clearly exhibited in Table 6. From the table it is quite apparent that the correlation values were largely significant and a more common trend was that a species exhibited highly negative and positive correlations for a particular parameter in mangrove dominated and mangrove impoverished and vice versa. This suggests that although the parameter is similar, its exploitation might differ in mangrove dominated and mangrove impoverished conditions since the species composition differed leading to

Table 1. Average annual values of the background parameters with standard deviations (the data from mangrove dominated and impoverished waters were recorded seasonally and made average to capture the variations annually).

Parameters (2011 and 2012)	Mangrove dominated	Mangrove impoverished
$PP (mgC m^{-3} h^{-1})$	30.20±5.45	29.77±5.49
Salinity (psu)	15.79±5.71	14.52 ± 5.80
Air Temp. (aT°C)	26.50±3.05	26.52±3.67
Water Temp (wT°C)	27.45±3.87	27.51±3.34
Wind Speed (km.h ⁻¹)	6.66±1.52	6.25 ± 1.82
D.O. (mgL^{-1})	5.82±1.49	5.93±1.40

Table 2. Comparative account of the premonsoonal (2011 and 2012) phytoplankton composition in mangrove impoverished and mangrove dominated waters of Hooghly Estuary in terms of relative abundance.

Mangrove Impoverished PRE'11 and 12		Mangrove dominated PRE'11 and 12		
Species	R.A. (%)	Species	R.A. (%)	
Asterionella japonicus	0.9102	Actinocyclus octonarius	0.2249	
Aulacodiscus kittonii	1.2136	Asterionella japonicas	2.142	
Bacteriastrum varians	0.3034	Bacillaria paxillifera	0.5335	
Biddulphia (Odontella) longicruris	2.8322	Bacteriastrum varians	1.4726	
Biddulphia (Odontella)mobiliensis	1.2136	Campylodiscus impressus	0.3681	
Biddulphia (Odontella) regia	1.011	Ceratium cylindrus	1.0389	
Biddulphia (Odontella) sinensis	2.4272	Ceratium furca	1.6641	
Campylodiscus impressus	0.6068	Ceratium fusus	1.8073	
Ceratium cylindrus	0.9102	Ceratium indicum	0.7363	
Ceratium inflatum	1.011	Ceratium lineatum	1.0014	
Chaetoceros balticum	0.3034	Ceratium trichoceros	1.071	
Chaetoceros decipiens	1.517	Ceratium tripos	3.0525	
Chaetoceros lorenzianus	1.8204	Chaetoceros compressus	4.9923	
Chaetoceros quarctatus	0.6068	Chaetoceros constrictum	1.0308	
Climacosphaenia moniligera	1.2136	Chaetoceros curvisetus	4.1194	
Cocconeis scutellum	0.405	Chaetoceros danicus	4.0297	
Coscinodiscus asteromphalus	1.2136	Chaetoceros decipiens	4.0605	
Coscinodiscus centralis	3.7417	Chaetoceros externum	1.6641	
Coscinodiscus concinnus	4.6527	Chaetoceros lorenzianus	4.6817	
Coscinodiscus eccentricus	0.6068	Chaetoceros pseudocurvisetus	0.7363	
Coscinodiscus gigas	0.9102	Chaetoceros peruvianus	2.7498	
Coscinodiscus hyalinus	4.551	Chaetoceros quarctatus	0.7363	
Coscinodiscus lineatus	2.6297	Corethron criophilum	0.7363	
Coscinodiscus marginatus	3.5399	Coscinodiscus concinnus	2.9493	
Coscinodiscus oculus-iridis	1.2136	Coscinodiscus eccentricus	0.7363	
Coscinodiscus radiatus	10.6191	Coscinodiscus gigas	0.2249	
Coscinodiscus tumidus	0.3034	Coscinodiscus hyalinus	1.9184	
Cyclotella caspia	2.3263	Coscinodiscus marginatus	0.3681	
Cyclotella striata	1.2136	Coscinodiscus radiates	5.2132	
Čyclotella stylorum	1.4161	Cyclotella striata	0.2249	
Ditylum brightwellii	0.7076	Ditylum brightwellii	2.7766	
Gvrosigma angulatum	0.6068	Ditylum buchananii	1.6065	
Haslea warwickea	2.7306	Hemidiscus kanavanus	1.5543	
Hemidiscus cuneiformis	1.011	Lauderia annulata	2.9748	
Hemidiscus kanavanus	0.7084	Leptocylindrus minimus	2.1875	
Lioloma elongata	1.4161	Lioloma elongate	0.3681	
Navicula transitans	1.2136	Okedenia inflexa	0.7363	

Mangrove impoverished PRE	11 and 12	Mangrove dominated PRE'11 and 12		
Species	R.A. (%)	Species	R.A. (%)	
Navicula spp.	0.9102	Noctiluca scintillans	2.3388	
Nitzschia elongata	1.2136	Pleurosigma aestuarii	1.1045	
Nitzschia sigma	0.6068	Proboscia alata var. indica	0.5335	
Nitzschia sigmoidea	2.7306	Prorocentrum micans	0.7363	
Nitzschia spp.	0.3034	Protoperidinium breviceps	1.6493	
Noctiluca scintillans	0.3034	Protoperidinium depressum	0.589	
Pinnularia viridis	0.6068	Protoperidinium divergens	1.2959	
Pleurosigma aestuarii	0.3034	Protoperidinium pallidum	1.2959	
Pleurosigma formosa	0.3792	Pseudonitzschia concatenatum	1.071	
Pleurosigma sp.	0.6068	Pseudonitzschia delicatissima	2.4781	
Pleurosigma spp.	0.6068	Pseudonitzschia seriata	1.1567	
Proboscia alata var. indica	0.7084	Rhizosolenia hebetate	1.8073	
Protoperidinium depressum	0.6068	Rhizosolenia setigera	2.6253	
Protoperidinium divergens	0.6068	Trichodesmium erythraeum	2.4245	
Protoperidinium pallidum	0.6068	Thalassionema frauenfeldtii	5.2333	
Roperia tessellata	0.6068	Thalassionema nitzschioides	5.3658	
Thalassionema frauenfeldtii	9.608	Skeletonema costatum	6.6749	
Thalassionema nitzschioides	6.6749	Synedra crystallinum	0.9102	
Thalassiosira condensata	1.2136	Synedra ulna	0.3681	
Thalassiothrix longissima	1.011			
Skeletonema costatum	0.405			
Synedra crystallinum	0.9102			
Synedra ulna var. oxyrhyncus	2.8315			

Table 2. Continued.

Table 3. Comparative account of the monsoonal (2011 and 2012) phytoplankton composition in mangrove impoverished and mangrove dominated waters of Hooghly Estuary in terms of relative abundance.

Mangrove impoverished MON'11 and 12		Mangrove dominated MON'11 and 12		
Species	R.A. (%)	Species	R.A. (%)	
Actinocyclus octonarius	3.5014	Amphora ostrearia	0.3368	
Amphora ostrearia	1.4005	Amphora ovate	0.3062	
Asterionella japonicus	2.8011	Aulacodiscus kittonii	0.6329	
Aulacodiscus kittonii	1.1204	Bellerochea malleus	0.689	
Bacteriastrum varians	1.4005	Biddulphia (Odontella) longicruris	0.7758	
Biddulphia (Odontella) mobiliensis	1.8674	Biddulphia (Odontella) mobiliensis	0.6125	
Biddulphia (Odontella) regia	1.4005	Biddulphia (Odontella) regia	0.8452	
Biddulphia (Odontella) sinensis	1.5406	Biddulphia (Odontella) sinensis	2.1029	
Ceratium inflatum	1.2605	Campylodiscus impressus	0.6125	
Climacosphaenia sp.	1.4005	Ceratium furca	1.4677	
Cocconeis pediculus	1.4005	Ceratium inflatum	0.8575	
Chaetoceros curvisetum	1.4005	Ceratium tripos	1.4677	
Chaetoceros lorenzianus	0.7002	Chaetoceros curvisetum	1.4677	
Chaetoceros peruvianus	0.7002	Chaetoceros compressum	1.4677	
Chaetoceros subtilis	1.4005	Chaetoceros decipiens	1.4677	
Coscinodiscus asteromphalus	2.661	Chaetoceros pseudocurvisetus	0.9187	
Coscinodiscus centralis	1.2605	Chaetoceros quarctatus	0.6125	
Coscinodiscus concinnus	1.3071	Coscinodiscus centralis	1.4904	
Coscinodiscus eccentricus	1.1671	Coscinodiscus concinnus	0.8268	
Coscinodiscus granii	1.6339	Coscinodiscus granii	1.8375	
Coscinodiscus hyalinus	2.2408	Coscinodiscus hyalinus	1.6966	

Braz. J. Biol. Sci., 2015, v. 2, n. 3, p. 155-168.

. . .

Mangrove impoverished MON'1	I and 12	Mangrove dominated MON'11 and 12			
Species	R.A.	Species	R.A.		
	(%)		(%)		
Coscinoaiscus lineatus	1.6806	Coscinoaiscus lineatus	1.4547		
Coscinodiscus marginatus	2.8011	Coscinodiscus marginatus	1.2403		
Coscinodiscus radiatus	2.1008	Coscinodiscus radiatus	2.2908		
Cyclotella striata	1.4005	Cyclotella caspia	3.6/51		
Diatoma anceps	1.4005	Cyclotella striata	0.6125		
Ditylum brightwelllii	3.3613	Diploneis sp.	0.4593		
Ditylum buchananii	1.4005	Ditylum brightwellii	0.2848		
Hemidiscus kanayanus	1.1204	Gyrosigma angulatum	0.3675		
Lioloma elongata	10.6442	Gyrosigma scalproides	0.6125		
Leptocylindrus danicus	1.4005	Haslea warwickea	0.245		
Navicula pupalis	1.1204	Lioloma elongata	0.8575		
Navicula sp.	1.1204	Melosira nummuloidea	1.6384		
Navicula pediculus	1.4005	Microcystis robusta	4.5938		
Navicula transitans	1.4005	Navicula balticum	0.6125		
Nitzschia sigma	0.7002	Navicula transitans	0.4593		
Nitzschia sigmoidea	1.1204	Navicula sp.	0.3062		
Pleurosigma elongatum	2.1008	Navicula pupalis	0.9187		
Proboscia alata var. indica	1.4005	Nitzschia bilobata	0.6125		
Pseudonitzschia seriata	1.8674	Nitzschia elongata	0.7758		
Rhizosolenia setigera	2.1008	Nitzschia sigma	0.5512		
Skeletonema costatum	5.042	Nitzschia sigmoidea	0.8039		
Skeletonema grevillei	4.4817	Noctiluca scintillans	0.8268		
Surirella ovata	1.4005	Pinnularia viridis	0.98		
Synedra crystallinum	2.1708	Pleurosigma sp.	0.6125		
Synedra ulna	1.2605	Pleurosigma elongatum	1.8375		
Synedra ulna var. oxyrhyncus	2.1008	Prorocentrum micans	0.6125		
Thalassionema nitzschioides	2.4509	Rhizosolenia setigera	0.6125		
Thalassionema frauenfeldtii	1.4007	Skeletonema costatum	15.6804		
Thalassiosira condensata	1.6806	Skeletonema grevillei	7.5952		
Thalassiothrix longissima	1.4007	Surirella ovata	0.3062		
Trichodesmium ervthraeum	1.4007	Svnedra crvstallinum	3.2157		
2		Thalassiosira condensata	5.2926		
		Thalassionema nitzschioides	8.7057		
		Thalassionema frauenfeldtii	0.9968		
		Triceratium favus	0.58		
		Trichodesmium ervthraeum	14.2055		

Table 3. Continued.

Table 4. Comparative account of the post monsoonal (2011 and 2012) phytoplankton composition in mangrove impoverished and mangrove dominated waters of Hooghly estuary in terms of relative abundance.

Mangrove impoverished POS	ST'11 and 12	Mangrove dominated POST'11	and 12
Species	R.A. (%)	Species	R.A. (%)
Actinocyclus senarius	1.1985	Amphora ovate	0.2921
Bellerochea malleus	1.1985	Aulacodiscus kittonii	0.4381
Biddulphia (Odontella) regia	2.0599	Bellerochea malleus	1.0954
Biddulphia (Odontella) mobiliensis	0.5617	Biddulphia (Odontella) longicruris	0.5969
Biddulphia (Odontella) sinensis	2.2097	Biddulphia (Odontella) mobiliensis	0.5477
Cerataulina pelagica	2.0224	Biddulphia (Odontella) regia	0.7795
Ceratium cylindrus	1.1235	Biddulphia (Odontella) sinensis	1.7066

Table 4. Continued.

Mangrove impoverished	POST'11 and 12	Mangrove dominated	POST'11 and 12
Species	R.A.	Snecies	R.A.
Species	(%)	Species	(%)
Ceratium indicum	1.1235	Ceratium cylindrus	1.3144
Chaetoceros compressus	2.0599	Ceratium furca	0.8069
Chaetoceros decipiens	1.6853	Ceratium indicum	1.0954
Chaetoceros lorenzianus	2.7715	Ceratium inflatum	0.5887
Chaetoceros peruvianus	2.9213	Ceratium tripos	1.0954
Chaetoceros quarctatus	1.2359	Chaetoceros compressus	0.8215
Coscinodiscus asteromphalus	1.7977	Chaetoceros curvisetus	1.6431
Coscinodiscus centralis	5.131	Chaetoceros danicus	0.3833
Coscinodiscus gigas	1.7602	Chaetoceros decipiens	0.3067
Coscinodiscus granii	1.64/9	Chaetoceros lorenzianus	0.662/
Coscinodiscus hyalinus	4.4569	Chaetoceros pseudocurvisetus	1.0954
Coscinodiscus lineatus	2.322	Chaetoceros quarctatus	0.3505
Coscinodiscus marginatus	3.7453	Coscinodiscus asteromphalus	1.2323
Coscinodiscus radiatus	5.0936	Coscinodiscus centralis	0.6755
Cyclotella caspia	1.7977	Coscinodiscus concinnus	1.7855
Cyclotella striata	0.5617	Coscinodiscus granii	1.2432
Cyclotella stylorum	1.1235	Coscinodiscus hyalinus	1.089
Diploneis sp.	0.5617	Coscinodiscus lineatus	1.2323
Ditylum buchananii	2.0599	Coscinodiscus marginatus	0.931
Ditylum brightwellii	8.4269	Coscinodiscus radiatus	6.7915
Haslea warwickea	2.9213	Diploneis sp.	0.54//
Hemidiscus kanayanus	0.8239	Ditylum brightwellii	1.4459
Lauderia annulata	0.8239	Ditylum buchananii	0.3067
Lioloma elongata	0.8239	Gyrosigma angulatum	0.4929
Navicula transitans	2.397	Guinaraia sp.	0.23
Navicula angulatum	1./9//	Hasiea warwickea	0.3286
Nitzschia bilobata	3.7078	Lauaeria sp.	0.23
Nitzschia sigma	1.0833	Liotoma etongata Malaging mumulaidag	0.8239
Nuzschia sigmolaea	0.8239	Metostra nummutotaea	0.9102 0.0155
Noctifuca scintilans	1.94/5	Microcystis robusta	8.2155
Direction inflexa	1.1255	Navicula sp.	1.0934
Pinnularia reclangulala	2.4/19	Navicula ballicum	0.3477
Porosira sp.	1.1963	Navicula pupalis	0.2738
P seudoniiz schia seriala Phizosologia styliformia	1.1983	Navicula transitans	0.4107
Rhizosolenia sitigona	0.0239	Nilzschia bilobala Nitzschia sigmoidea	0.54/7
Khizosolenia seligera	1.0833	Nuzschia sigmolaea	0.0380
Skeletonema costatum Skeletonema anovillei	1.0635	Nocilluca scinillans	0.7394
Skeleionema grevillei	1.1255	Finnularia viridia	1.0934
Thalassion on a frauonfoldtii	2.9213	Plaunosiama sp	0.0640
Thalassionema frauenjelalli Thalassiosira condensata	1.2339	Pleurosigma aestuarii	1.0431
Thalassionoma nitzschioidas	1./9//	Deurosigma elongata	1.1227
Thatassionema niizschiolaes	1.1905	Pleurosigma vootangulata	0.22
Trichoaesmum eryinraeum	1.1965	Prorocontrum micans	0.23
		Phizosolonia styliformis	0.3477
		Skalatonema oostatum	0.3833
		Skeletonema gravillei	1/.704/ 6 02/7
		Svnedra ulna	0.0247
		Syneara anu Syneara arystallinum	0.3200
		Syneara crystattinum Thalassionoma frauonfoldtii	2.0734 0.0069
		Thalassionema nitzschioides	2 1021
		Thalassiosira condensata	J.1931 A 0676
		Tricoratium favus	4.0070
		Trichodesmium ervthraeum	0.7302

Table 5. Spices of diatoms which occurred in both the years of the study tenure, in mangrove impoverished and mangrove dominated estuarine waters, serving as tools to understand the effect of the two different ambiences on the existing phytoplankton populations. The bolder names are of those which have appeared in more than one season.

Pre'11 and 12	M.I. R.A.	M.D. R.A.	Mon'11 and 12	M.I. R.A.	M.D. R.A.	Post '11 and 12	M.I. R.A.	M.D. R.A.
	(%)	(%)		(%)	(%)		(%)	(%)
Asterionella japonicus	0.9102	2.142	Amphora ostrearia	1.4005	0.3368	Bellerochea malleus	1.1985	1.0954
Bacteriastrum varians	0.3034	1.4726	Aulacodiscus kittonii Biddulphia	1.1204	0.6329	Biddulphia (Odontella) regia Biddulphia	2.0599	0.5477
Campylodiscus impressus	0.6068	0.3681	(Odontella) mobiliensis	1.8674	0.6125	Odontella) mobiliensis	0.5617	0.7795
Ceratium cylindrus	0.9102	1.0389	Biddulphia (Odontella) regia	1.4005	0.8452	Biddulphia (Odontella) sinensis	2.2097	1.7066
Chaetoceros decipiens	1.517	4.0605	Biddulphia (Odontella) sinensis	1.5406	2.1029	Ceratium cylindrus	1.1235	1.3144
Chaetoceros lorenzianus	1.8204	4.6817	Ceratium inflatum	1.2605	0.8575	Ceratium indicum	1.1235	1.0954
Chaetoceros quarctatus	0.6068	0.7363	Chaetoceros curvisetum	1.4005	1.4677	Chaetoceros compressus	2.0599	0.8215
Coscinodiscus concinnus	4.6527	2.9493	Coscinodiscus centralis	1.2605	1.4904	Chaetoceros decipiens	1.6853	0.3067
Coscinodiscus eccentricus	0.6068	0.7363	Coscinodiscus concinnus	1.3071	0.8268	Chaetoceros lorenzianus	2.7715	0.6627
Coscinodiscus gigas	0.9102	0.2249	Coscinodiscus granii	1.6339	1.8375	Chaetoceros quarctatus	1.2359	0.3505
Coscinodiscus hyalinus	4.551	1.9184	Coscinodiscus hyalinus	2.2408	1.6966	Coscinodiscus asteromphalus	1.7977	1.2323
Coscinodiscus marginatus	3.5399	0.3681	Coscinodiscus lineatus	1.6806	1.4547	Coscinodiscus centralis	5.131	0.6755
Coscinodiscus radiatus	10.6191	5.2132	Coscinodiscus marginatus	2.8011	1.2403	Coscinodiscus granii	1.6479	1.2432
Cyclotella striata	1.2136	0.2249	Coscinodiscus radiatus	2.1008	2.2908	Coscinodiscus hyalinus	4.4569	1.089
Ditylum brightwellii	0.7076	2.7766	Cyclotella striata	1.4005	0.6125	Coscinodiscus lineatus	2.322	1.2323
Hemidiscus kanayanus	0.7084	1.5543	Ditylum brightwellii	3.3613	0.2848	Coscinodiscus marginatus	3.7453	0.931
Lioloma elongata	1.4161	0.3681	Lioloma elongata	10.6442	0.8575	Coscinodiscus radiatus	5.0936	6.7915
Noctiluca scintillans	0.3034	2.3388	Navicula transitans	1.4005	0.4593	Diploneis sp.	0.5617	0.5477
Pleurosigma aestuarii	0.3034	1.1045	Nitzschia sigma	0.7002	0.5512	Ditylum buchananii	2.0599	1.4459
Proboscia alata var. indica	0.7084	0.5335	Nitzschia sigmoidea	1.1204	0.8039	Ditylum brightwelli	8.4269	0.3067
Protoperidinium depressum	0.6068	0.589	Pleurosigma elongatum	2.1008	1.8375	Haslea warwickea	2.9213	0.3286
Protoperidinium divergens	0.6068	1.2959	Rhizosolenia setigera	2.1008	0.6125	Lauderia annulata	0.8239	0.23
Protoperidinium pallidum	0.6068	1.2959	Skeletonema costatum	5.042	15.6804	Lioloma elongate	0.8239	0.8259
Thalassionema frauenfeldtii	9.608	5.2333	Skeletonema grevillei	4.4817	7.5952	Navicula transitans	2.397	0.4107
Thalassionema nitzschioides	6.6749	5.3658	Surirella ovata	1.4005	0.3062	Nitzschia sigmoidea	0.8239	0.6586
Skeletonema costatum	0.405	6.6749	Synedra crystallinum	2.1708	3.2157	Noctiluca scintillans	1.9475	0.7394
Synedra crystallinum	0.9102	0.9102	Thalassionema nitzschioides	2.4509	5.2926	Pinnularia rectangulata	2.4719	1.0954
Synedra ulna var. oxyrhyncus	2.8315	0.3681	Thalassionema frauenfeldtii	1.4007	8.7057	Rhizosolenia styliformis	0.8239	0.3833
			Thalassiosira condensata	1.6806	0.9968	Skeletonema costatum	1.6853	17.964 7
			Trichodesmium ervthraeum	1.4007	14.2055	Skeletonema grevillei	1.1235	6.0247

 Table 5. Continued.

Pre'11 and 12	M.I. R.A. (%)	M.D. R.A. (%)	Mon'11 and 12	M.I. R.A. (%)	M.D. R.A. (%)	Post '11 and 12	M.I. R.A. (%)	M.D. R.A. (%)
						Synedra crystallinum	2.9213	2.8754
						Thalassionema frauenfeldtii	1.2359	0.9968
						Thalassiosira condensata	1.7977	3.1931
						Thalassionema nitzschioides	1.1985	4.0676
						Trichodesmium erythraeum	1.1985	0.7302

M.I. = Mangrove impoverished; M.D. = Mangrove dominated.

Table 6. The following table is depicting the major diatoms species and their responses to various nutrient fluctuations in mangrove dominated and impoverished waters of Hooghly Estuary, through the correlation with the nutrients contents and relative abundances.

	M.I.	M.D.	M.I.	M.D.	M.I.	M.D.
Species	Nitrate-N	Nitrate-N	Phosphate-P	Phosphate-P	Silicate	Silicate
Coscinodiscus hyalinus	-0.9681	+0.5115	-0.5504	+0.9188	-0.6737	-0.6408
Coscinodiscus marginatus	-0.9999	+0.8266	+0.7419	-0.4505	+0.4672	+0.8057
Coscinodiscus radiatus	-0.6132	-0.9969	+0.0745	-0.2079	-0.9849	-0.2571
Ditylum brightwellii	-0.3852	-0.2538	-0.9045	+0.9257	+0.6358	-0.9966
Lioloma elongata	+0.9866	+0.3019	+0.6230	-0.9056	+0.6048	+0.9995
Synedra crystallinum	-0.0715	+0.3766	-0.7218	-0.8691	+0.8483	+0.9988
Skeletonema costatum	+0.8834	+0.0564	+0.3413	-0.9824	+0.8270	+0.9605
Thalassionema frauenfeldtii	-0.2853	+0.9534	+0.4308	+0.4259	-0.9806	+0.0321
Thalassionema nitzschioides	-0.0864	+0.6801	+0.6037	+0.8157	-0.9211	-0.4657

M.I. = Mangrove impoverished; M.D. = Mangrove dominated.

different interspecific competition stress. All the diatom species have expressed significantly high correlation values with nutrients but very few have actually reflected a constant trend to be utilized as indicators to a certain conditions. But the ones that have expressed such affinities can truly serve as potential bioindicators of well mixed estuarine aquatic ecosystems.

Discussion

The water bodies adjacent to mangrove mudflats and those that are devoid of any mangrove mudflats were chosen due to their variations in the selected background physicochemical parameters which are clearly depicted in Figure 2 and Table 1. Although fluctuation in seasonal dissolved nitrate-nitrogen and dissolved silicate contents in mangrove impoverished and mangrove dominated well mixed estuarine waters were found to be more or less similar, the difference in phosphate concentration was quite obvious during the tenure of the study. The reason behind dissolved phosphate contents in mangrove dominated regions to be high is due to the fact that mangrove mudflats harbor large number of phosphate solubilizing bacteria (De et al., 2012) or PSB and they through the formation of low molecular weight organic acid, bind and release the inorganic phosphate into solution phase. Hence, higher number of PSB means greater solubilization of phosphate.

Primary productivity in the mangrove dominated waters appeared to be comparatively higher than the mangrove impoverished waters (Table 1), a fact that can be vindicated from the Tables 2, 3 and 4 which depict comparatively higher number of phytoplankton species (diatoms mainly) in mangrove dominated waters. Greater dissolved phosphate might lead to conditions conducive enough to support a higher population density.

Dissolved oxygen however exhibited a more or less similar fluctuation in both the specific study sites with slightly lower values recorded from mangrove dominated estuaries.

Salinity was also found to be higher in mangrove dominated waters since the mangrove dominated sampling stations were situated closer to the estuary mouth, compared to the mangrove impoverished stations that included stations with riverine dominance along with marine influence, eventually decreasing the average salinity of the surface water. Another fact that can contribute to the surface water salinity is the prevailing wind speed, which was recorded to be relatively high over mangrove dominated sampling sites than their mangrove impoverished counterparts. This could have triggered higher rates of evaporation resulting in higher salinity of the surface water.

From the Table 2, 3 and 4, the fact that phytoplankton population density in mangrove dominated waters were much higher compared to the mangrove impoverished waters. The above mentioned governing physicochemical parameters can explain phytoplankton proliferation in mangrove dominated water. The three tables are depicting seasonal variations in the phytoplankton (diatom mainly) relative abundances. Table 5 describes the phytoplankton species which have been observed in mangrove dominated and mangrove impoverished waters in a given season. From this table, it can be observed that in general the species appearing in mangrove dominated waters had higher relative abundances than when they appeared in mangrove impoverished waters with exceptions like Coscinodiscus spp, Odontella spp, Thalassionema frauenfeldtii and Thalassionema nitzschioides etc. These species showed very high relative abundances in mangrove impoverished waters. It has to be borne in mind that the species were not collected at different stations on different days, but on the same days of collection, hence emphasizing more on the growth conducive factors of the mangrove dominated waters, viz. dissolved phosphate.

Among the species mentioned in Table 5, only a handful of phytoplankton species were observed to occur in all the three seasons, both the years of study as well as both in mangrove dominated and in mangrove impoverished estuarine waters.

A correlation study was performed among these species in terms of their relative abundances in both mangrove dominated and mangrove impoverished waters and the chief governing nutrients (Table 6). From the table it is quite obvious that almost all the species which have appeared in mangrove dominated and impoverished waters throughout the year have generated significant correlation values, both positive and negative. Mostly a particular parameter has shown positive and negative values for the same parameter considered in mangrove dominated and impoverished waters. This could be due to the fact that both the different study zones might have had different constraints and various species composition in a given zone rendered the exploitation of a particular parameter specific to that zone only, depending on background parameters, interspecific competition stress of a zone as well as due to factors unaccounted for.

Only those with a consistent correlation value have been chosen to serve as potential indicators to nutrient contents in well mixed estuarine waters. From table 6, the following species viz., Coscinodiscus hyalinus [M.I. silicate: -0.6737 and M.D. silicate: -0.6408], Coscinodiscus radiatus [M.I. nitrate: -0.6132 and M.D. nitrate: -0.9939; M.I. silicate: -0.9849 and M.D. silicate: -0.2571], Lioloma elongata [M.I. nitrate: +0.9866 and M.D. nitrate: +0.3019; M.I. silicate: +0.6048 and M.D. silicate: +0.9995], Skeletonema costatum [M.I. M.D. silicate: silicate: +0.8270 and +0.9605], Synedra crystallinum [M.I. phosphate: -0.7218 and M.D. phosphate: -0.8691; M.I. silicate: +0.8483 and M.D. +0.99881.Thalassionema silicate: frauenfeldtii [M.I. phosphate: +0.4308 and M.D. phosphate: +0.4259; M.I. silicate: -0.9806 and M.D. silicate: +0.0321] and Thalassionema nitzschioides M.I. phosphate: +0.6037 and M.D. phosphate: +0.8157; M.I. silicate: -0.9277 and M.D.

Braz. J. Biol. Sci., 2015, v. 2, n. 3, p. 155-168.

silicate: -0.4657], where M.I. = Mangrove Impoverished, M.D. = Mangrove Dominated.

From the above stated data set it is quite obvious that these few diatom species do possess the potential of being established as probable bioindicators of various nutrients in well mixed tropical estuaries such as the Hooghly Estuary. The positive correlation implies that the relative abundance of a particular species increased with increase of a specific nutrient content and inversely negative correlation means the relative abundance is lowest when the nutrient concentration is highest, which could be due to over proliferation of a competitive species exploiting the increased nutrient or it could be because the species in question has utilized the nutrient to increase in number, rendering the dissolved nutrient low in concentration. Both the scenarios are highly probable in any well mixed estuarine ecosystem.

Conclusion

Although the study encompassed a tenure of two years (2011 and 2012), but the results generated from it is of immense significance since it was aimed at establishing probable bioindicator phytoplankton species (mainly diatoms due to their preponderance) in a well mixed estuary. An estuarine river system might be influenced by the presence and absence of mangrove forests along its bank, a fact prominently shown in the present study. Any changes in the ambient water quality governing parameters phytoplankton species composition and their relative abundances in a population gets reflected through the absence, presence or proliferation of certain species. The diatoms are the most dominant phytoplanktons in a well mixed estuarine aquatic ecosystem and those species which expressed a very strong degree of affinity towards a certain trophic condition have been documented through rigorous analyses of samples from natural set ups, thereby ensuring the highest possible authenticity regarding the applicability and implication of the study results. Establishment of phytoplanktons with potential as bioindicators in well mixed estuarine waters will ensure better monitoring of the ever changing and highly dynamic ecosystem in a holistic way, along with the existing abiotic estimation and survey methods.

Acknowledgment

The financial aids from the University Grant Commission (UGC) [39-567/2010 (SR) dated 12.1.2011], New Delhi, and Department of Science and Technology (DST-PURSE), New Delhi, India, are gratefully acknowledged. It is always hard to work in the remote and partly inaccessible islands of the Sundarbans by road and the financial support is immensely appreciated for the smooth running of the study. We also owe our sincere gratitude to the Department of Forestry of West Bengal, India, for providing us with the opportunity to work in the Sundarban Deltaic Region.

Conflict of interest statement

Authors declare that they have no conflict of interests.

References

Al-Kandari, M.; Al-Yamani, F. Y.; Al-Rifaie, K. **Marine phytoplankton atlas of Kuwait's waters**. Safat: Kuwait Institute for Scientific Research, 2009.

Biswas, H.; Mukhopadhyay, S. K.; De, T. K.; Sen, S.; Jana, T. K. Biogenic controls on the airwater carbon dioxide exchange in the Sundarban mangrove environment, Northeast coast of Bay of Bengal, India. Limnol. Oceanogr., v. 49, n. 1, p. 95-101, 2004.

De, T. K.; Sarkar, T. K.; Mukherjee, A.; Maiti, T. K.; Das, S. Abundance and occurrence of phosphate solubilizing bacteria and phosphatase in sediment of Hooghly Estuary, North East Coast of Bay of Bengal, India. **Journal of Coastal Development**, v. 15, n. 1, p. 9-16, 2011.

Desikachary, T. V. **Atlas of diatoms**. Madras: Madras Science Foundation, 1986-1989.

Fuhs, G. W.; Demmerle, S. D.; Connelli, E.; Chen, M. Characterization of phosphorus limited plankton algae. **Environ. Conserv. Tech. Pap.**, v. 6, p. 1-40, 1971.

Grasshoff, K.; Erhardt, M.; Kremling, K. **Methods of seawater analysis**. Weinmeim: Verlag Chemie, 1983.

Hasle, G. R.; Syvertsen, E. R. Marine diatoms. In: Tomas, C. R. (Ed). **Identifying marine phytoplankton**. London: Academic Press, 1994. p. 5-385. Martin-Jézéquel, V.; Hildebrand, M.; Brzezinski, M.A. Silicon metabolism in diatoms: implications for growth. **J. Phycol.**, v. 36, p. 821-840, 2000.

Mukhopadhyay, S. K.; Biswas, H.; De, T. K.; Jana, T. K. Fluxes of nutrients from the tropical River Hoogly at the land-ocean boundary of Sundarban, NE coast of Bay of Bengal, India. J. Mar. Sys., v. 62, p. 9-21, 2006.

Nelson, D. M.; Tréguer, P.; Brzezinski, M. A.; Leynert, A.; Quéguiner, B. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. **Global Biogeochemical Cycle**, v. 9, n. 3, p. 359-372, 1995.

Smol, J. P.; Stroemer, E. F. **The diatoms**: applications for the environmental and Earth Sciences. 2 ed. Cambridge: Cambridge University Press, 2010. Stevenson, R. J.; Pan, Y. Diatoms as indicators of coastal palaeo-environments and relative sealevel change. In: Stroemer, E. F.; Smol, J. P. (ed.). **The diatoms**: applications for the environmental and earth sciences. New York: Cambridge University Press, 1999. p. 277-418.

Strickland, J. D. H.; Parsons, T. R. **A practical handbook of seawater analysis**. 2 ed. Canada: Fish Res. Board, 1972.

Tréguer, P.; Nelson, D. M.; Van Bennekom, A. J.; DeMaster, D. J.; Leynert, A.; Quéguiner, B. The silica balance in the world ocean: a reestimate. **Science**, v. 268, p. 375-379, 1995.

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.