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Abstract. Effects of radiation in biological systems are quite 
interesting. Interaction of radiation to epigenetic mechanisms 
has been also demonstrated earlier. The aim of this review is to 
sketch a current scenario on radiation exposure/insults on the 
epigenetic mechanisms in mammalian cells. Evidence from the 
databases, mainly from Pubmed and Science Direct were 
considered. Findings suggest that radiation has a dose and time-
dependent effect in our body. Cells and tissues from different 
sources have differential responses towards radiation insults. 
Although radiation has impacts on epigenetic modulation, but it 
has beneficial combinatorial effects with a number of epigenetic 
modalities. Radiation has both bad and good impacts on 
epigenetic mechanisms. 
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Introduction 

Radiotherapy is one of effective 
modalities in cancer treatment. Ionizing 
radiation (IR) exposure is essential to 
improve radiotherapy in this case. IR 
exposure and insults may occur from 
various origins, including environment, 
diagnostic center (e.g., computed 
tomography), work place and so on 
(Miousse et al., 2017). However, 

radiation exposure induces a multitude 
of biological effects, including cancer and 
degenerative diseases (Boerma et al., 
2016; Kutanzi et al., 2016). Radiation 
insults can have deterministic effects, 
short-term and long-term injury in 
normal (non-tumor) tissues (Hall and 
Giaccia, 2011). Radiation therapy induces 
DNA base damage, single strand breaks 
(SSBs), and double-strand breaks (DSBs). 

https://doi.org/10.21472/bjbs.051032
http://revista.rebibio.net/
mailto:muhammad.torequl.islam@tdt.edu.vn
https://orcid.org/0000-0003-0034-8202
https://goo.gl/6UuQeW�
http://www.orcid.org/�


590 Islam 
 

Braz. J. Biol. Sci., 2018, v. 5, No. 10, p. 589-598. 
 

The latter one is un-repairable (Qiu et al., 
2009). 

Epigenetics, the recent field of 
molecular biology has been arisen over 
past 25 years. Epigenetics is the study of 
heritable changes in gene expression that 
are not associated with alterations in the 
primary DNA sequence. The epigenetic 
mechanisms of regulation include 
methylation of DNA, post-translational 
histone modifications, nucleosome 
positioning (chromatin remodelling) 
along DNA, and non-coding RNAs (non-
coding RNA modulation) are vital for 
normal development and maintenance of 
cellular homeostasis (Espada and 
Esteller, 2007; Jones, 2012). Epigenetic 
mechanisms are also essential for normal 
development and function of the immune 
system (Strickland and Richardson, 
2008). This review focuses radiation 
exposure/insults on epigenetic 
mechanisms in mammalian cells. 

Radiological effects on 
epigenetic modulation 

Radiation induces histone 
hyperacetylation, and can cause an 
increase in histone H3 acetylation within 
the promoter regions of COX2, 
interleukin 8 (IL-8) and MnSOD (Pollack 
et al., 2009). IR can also cause histone H3 
hyperacetylation at the transcriptional 
repressed mating pheromone a-factor 2 
(MFA2) promoter (Yu and Waters, 2005). 
Cells whose chromatin are naturally 
compacted, are more hypersensitive to 
radiation-induced killing, primarily by 
single-hit mechanism (Biade et al., 2001). 
When DNA damage occurs, chromatin 
structure is altered by: (i) covalent 
histone modifications, (ii) incorporation 
of histone variants into nucleosomes, and 
(iii) ATP-dependent chromatin 
remodelling (Vaquero et al., 2003, 
Shogren-Knaak et al., 2006). Radiation 
induces diubiquitylation of γ-H2AX 
presents a model for chromatin 
reorganization and the sequential 
binding of adaptor proteins in response 
to DSB (Mailand et al., 2007). 

Generally, DNA methylation plays 
pivotal roles in normal development, 
proliferation, and proper maintenance of 
genome stability in a given organism. 20 
Gy of X-rays in rat spleen tissue showed a 
significant loss of global DNA 
methylation and down-regulation of DNA 
methyltransferases and MeCP2. 
Irradiation significantly altered 
expression of microRNA 194 (miR-194), 
a miRNA putatively targeting both DNA 
methyltransferase-3a and MeCP2 
(Koturbash et al., 2007). After whole 
body irradiation of 50 cGy as well as 5 
cGy of X-rays per day (0.2 cGy/s) for 10 
days, protein 16 inhibitor kinase 
(p16INKa) promoter methylation was 
seen in C57/Bl rat liver (Kovalchuk et al., 
2004). 

DNA and/or histone methylation, 
the loss of global DNA methylation, and 
DNA hypermethylation at the promoter 
regions of tumor-suppressor genes has 
also reported in various cancers (Pfeifer 
and Rauch, 2009). In some studies, IR-
induced hypermethylation of p16INK4a 
(Belinsky et al., 2004), DNA and histone 
methylation and loss of global DNA 
methylation in the bone marrow, thymus 
and spleen (Koturbash et al., 2005; 
Pogrlbny et al., 2005; Miousse et al., 
2014), DNA methylation stem primarily 
from RE (Prior et al., 2016), and histone 
H3 lysine 9 (H3K9me3) and histone H4 
lysine 20 (H4K20me3) trimethylation at 
low and high-dose IR (Pogrlbny et al., 
2005; Koturbash et al., 2007) have been 
reported. However, DNA methylation 
and histone methylation may exist at 
low-dose and high-dose radiation area, 
respectively (Ma et al., 2010). 

Low-dose IR-induced adaptive 
response range was shown decades ago 
from 0.01 to 0.2 Gy. This type of IR can 
cause bystander effect, possibly via-  
(a) gap-junction intercellular 
communication; (b) interactions 
between ligands and their specific 
receptors; (c) interaction between the 
secreted factors and their specific 
receptors; and (d) directly through 
plasma membranes. According to Joiner 
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et al. (1996) hyper-radiosensitivity is 
seen between 0.02 to 80 Gy in different 
mammalian cells, where ells irradiated 
by low-dose radiation (LDR) (about 0.02 
⁓ 0.50 Gy) are more sensitive to radiation 
than with higher dose ranges (0.50 ⁓ 
1.00 Gy). However, chromosomal 
aberrations and spontaneous DNA 
damage in the progeny of cells irradiated 
with 50 or 100 cGy (Maxwell et al., 
2008), this may be due to a persistent 
increase of reactive oxygen species (ROS) 
(Dahle and Kvam, 2003) and subsequent 
mitochondrial dysfunction-linked 
elevated ROS levels, reduced Mn-
Superoxide Dismutase (Mn-SOD) activity 
and TGF-β inhibition capacity of IR (Kim 
et al., 2006; Maxwell et al., 2008), cell 
cycle arrest and modulation of some 
important proteins (Sak et al., 2017). 

Phosphoinositide 3-kinase 
(PI3K)/chromosomal gene that encodes 
protein kinase B (AKT) pathway is 
closely associated with three major 
radiation resistance mechanisms: (i) 
tumor intrinsic radiosensitivity, (ii) 
tumor cell proliferation ability, and (iii) 
the hypoxia microenvironment (Zhan 
and Han, 2004). After IR treatment, 
effective inhibition the activity of PI3K 
and its downstream component 
mammalian target of rapamycin (mTOR) 
will help to maintain the DNA damage 
status and increase the numbers of 
γH2AX foci, together with the enhanced 
G2 phase cell cycle delay (Fokas et al., 
2012). However, inducing the function of 
transforming growth factor beta (TGF-β) 
receptor or constitutively activating 
SMAD family may reduce DNA 
fragmentation, caspase-3 cleavage and 
γH2AX foci formation in irradiated cells 
(An et al., 2013). 

It is evident that poly (ADP-
ribose) polymerase-1 (PARP-1) activity 
is essential in the upstream regulation of 
IR-induced nucler factor kappa B (NF-
κB) activation and sensitizes cancer cells 
(Veuger et al., 2009). However, mitogen-
activated protein kinase (MAPK) 
pathway activates the downstream of 
death receptors and procaspases, and 

DNA damage signals, such as the JNK, 
p38 MAPK and NF-κB pathways (Dent et 
al., 2003). IR, through the MAPK 
signaling pathway, can induce the 
initiation of extra-cellular growth factor 
receptor (EGFR)-extra-cellular receptor 
kinase (ERK) signaling and upregulate 
the expression of DNA repair genes 
XRCC1 and ERCC1 in an ERK1/2-
dependent fashion.  

Although, the exact mechanism of 
IR-induced changes in DNA and histone 
methylation remain largely unknown, 
but it has been through that, IR can affect 
mRNA and protein levels of DNA 
methyltransferases, as well as their 
enzymatic activity such as the levels of de 
novo DNA methyltransferases Dnmt1, 
Dnmt3a and Dnmt3b (Pogrlbny et al., 
2005; Koturbash et al., 2016). IR is 
evident to cause a loss in histone H4 
lysine 20 trimethylation (H4K20me3) in 
a study (Pogrlbny et al., 2005). In 
another study, nuclear DNA 
methyltransferase activity was found to 
decrease up to 3 days after exposure 
to10 Gy of γ-rays in cell lines (Kalinic et 
al., 1989). Moreover, It can disturb 
methyltransferases and affect the 
availability of methyl donors (Koturbash 
et al., 2016; Ghosh et al., 2013). 

Cancer, interacts extensively with 
underlying genetic mutations is now 
understood to be a disease of widespread 
epigenetic dysregulation. Although, a 
number of epigenetic drugs have been 
approved by the Food and Drug 
Administration (FDA), but there are lots 
of limitations that are obstacles to the 
success. The application of epigenetic 
sensitization to radiotherapy may be one 
of the best modalities in case of solid 
tumor management (Abdelfatah et al., 
2016). In a phase-I trial, Ree et al. (2010) 
found a positive outcome in GI cancer, 
where radiosensitization was supposed 
to result hyperacetylation of histone 
using histone deacetyltransferases 
(HDAC).  

Ultraviolet (UV) irradiation and 
carcinogens have been reported to 
induce epigenetic alterations in animals. 
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In a study, the genome-wide DNA 
methylation profiles of skin cancers were 
induced by ultraviolet B (UVB) irradiation 
in SKH-1 mice, where 6003 genes in the 
UVB insult group exhibited a greater than 
2-fold change in CpGmethylation. The top 
canonical pathways identified by IPA 
after the treatment were related to 
cancer development, cAMP-mediated 
signaling, G protein coupled receptor 
signaling and phosphatase and tensin 
homolog deleted on chromosome ten 
(PTEN) signaling associated with UVB 
treatment. In addition, the mapped 
interleukin (IL)-6-related inflammatory 
pathways displayed alterations in the 
methylation profiles of inflammation-
related genes linked to UVB treatment 
(Yang et al., 2014). 

An open chromatin pattern 
related to radiation-inducibility of 
diacylglycerol kinase alpha (DGKA) is 
associated with the onset of radiation-
induced fibrosis. In a recent study, BET-
bromodomain inhibition suppressed 
induction of DGKA in bleomycin-treated 
fibroblasts, reduced H3K27ac at the 
DGKA enhancer and repressed collagen 
marker gene expression (Valinciute et al., 
2017). Alterations in fibroblast 
morphology and reduction of collagen 
deposition were also observed in this 
study. 

However, alterations in the DNA 
sequence cannot explain these biological 
effects of, unless it is thought that 
epigenetics factors may be involved. 
Detection of some specific microRNAs 
(or miRNAs) can be potential biomarkers 
to understand this situation. A study 
performed with human blood exposed to 
0.5 Gy, 1 Gy, 2.5 Gy, and 5Gy suggests 
that up to 1 Gy radiation exposure up-
regulation occurs to hsa-miR-107, hsa-
miR-126-3p, hsa-miR-144-3p, hsa-miR-
17-5p, hsa-miR-20b-5p, hsa-miR-5194, 
and hsa-miR-185-5p; while down-
regulation occurs of hsa-miR-3180 and 
hsa-miR-4730. Radiation exposure at 

5 Gy caused down-regulation of hsa-miR-
142-3p, hsa-miR-142-5p, hsa-miR-223-
3p, and hsa-miR-451a. Generally, hsa-
miR-20b-5p, hsa-miR-17-5p, and hsa-
miR-185-5p may be involved in 
modulating genes underlying cell cycle 
control and the development of some 
cancers, including thyroid and prostate 
cancer. Thus, the miRNA-gene 
interactions associated with 1 to 5 Gy of 
radiation dosage treatment may be the 
key molecular signatures underlying the 
damages caused by radiation exposure. 
Moreover, hsa-miR-20b-5p and hsa-miR-
17-5p share many target genes, thus, 
they can modulate gene expression 
through a cooperative manner (Lee et al., 
2014). The expression of tumor-
suppressor miR-34a was upregulated 
whereas miR-7 was downregulated in 
irradiated hematopoietic tissues after 2.5 
Gy of X-rays (Ilnytskyy et al., 2008). miR-
521 significantly sensitizes prostate 
cancer cells to radiation treatment using 
a miR-521 mimic which can overexpress 
miR-521 (Josson et al., 2008). Moreover, 
ban encoding a 21 nt miRNA was evident 
to activate by IR to repress hid to limit, 
IR-induced apoptosis in Drosophila 
(Jaklevic et al., 2008). At  20 Gy of X-rays 
in rats induced a bystander effect in lead-
shielded, distant spleen tissue. 
Additionally, miR-194 was significantly 
upregulated in the animal’s spleen after 7 
months exposure to IR (Koturbash et al., 
2007). However, the effect of radiation 
on microRNA expression may vary 
according to cell type, radiation dose, and 
post-irradiation time point (Ma et al., 
2010). It is evident that, miRNA can 
effectively activate the expression of 
DNA damage response genes and cell 
cycle related genes in the nucleus, and 
play a critical role in the modulation of 
radiation insults and radiosensitivity in 
tumor cells (Zhao et al., 2013). Impacts of 
IR insults on miRNAs have been given in 
Table 1. 
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Table 1. Expression of miRNA after IR insults in different organs/cells in mammals. 

Organ or 
cell type Up-regulation Down-regulation References 

Brain let-7a; let-7b; let-7c; let-7d; let-7e; let-
7f; let-7g; let-7i; miR-15a; miR-16; miR-
17-3p; miR-17-5p; miR-19a; miR-19b; 
miR-21; miR-22; miR-142-3p; miR-
142-5p; miR-143; miR-155; miR-191; 
miR-379; miR-601  

miR-107; miR-181a; 
miR-521  

Karube et al., 2005; 
Wang et al., 2007; 
Kumar et al., 2009; 
Rhodes et al., 2012 

Thyroid let-7c; let-7d; let-7g; miR-17-3p; miR-
17-5p; miR-27b; miR-34a; miR-34b; 
miR-188-5p; miR-365  

let-7f; let-7g; miR-10a; 
miR-106a; miR-152  

Grelier et al., 2009; 
Lin et al., 2010 

Thorax miR-15a; miR-16; miR-17-5p; miR-19a; 
miR-19b; miR-20b; miR-22; miR-24; 
miR-27a; miR-27b; miR-30a-5p; miR-
99a; miR-106a; miR-148a; miR-221; 
miR-365; miR-126; let-7a; miR-495; 
miR-451; miR-128b 

let-7a; let-7b; let-7c; let-
7d; let-7e; let-7f; let-7i; 
miR-26b; miR-125a; 
miR-155; miR 130a, 
miR-106b, miR-19b, 
miR-22, iR-15b, miR-
17-5p; miR-21 

Martello et al., 
2010; Guo et al., 
2012; Piovan et al., 
2012 

Breast  miR-302a; miR-302b; 
miR-302c; miR-302d; 
miR-302e  

Dent et al., 2003 

Prostate miR-191; miR-379; miR-29b 7; miR-
191; miR-22; miR-200c; miR-141; miR-
24 ; miR-30a-5p; miR-9-1  

miR-100; miR-107; 
miR-133b; miR-143; 
miR-145; miR-196a; 
miR-521; miR-106b; 
miR-199a  

Engels et al., 2006; 
Burk et al., 2008; 
Mott et al., 2010 

Rectum miR-1183; miR-483-5p; miR-622; miR-
125a-3p; miR-1224-5p; miR-188-5p; 
miR-1471; miR-671-5p; miR-1909; 
miR-630; miR-765; miR125b; miR137  

miR-1274b; miR-720  Bussing et al., 
2008; Deng et al., 
2008 

Blood let-7f; miR-106a; miR-106b; miR-126; 
miR-1280; miR-142-5p; miR-145; miR-
148a; miR-148b; miR-16; miR-17-3p; 
miR-17-5p; miR-188-5p; miR-1913; 
miR-19a; miR-19b; miR-19b; miR-20a; 
miR-20b; miR-21; miR-221; miR-222; 
miR-24; miR-27a; miR-27b; miR-29a; 
miR-29c; miR-34a; miR-34b; miR-589; 
miR-601; miR-663; miR-BHRF1-1; miR-
Plus-F1147; miR-Plus-G1246-3p 

let-7e; miR-100; miR-
10a; miR-143; miR-152; 
miR-17; miR-181a; 
miR-193b; miR-196a; 
miR-19b; miR-200b; 
miR-21; miR-29a; miR-
33a; miR-335; miR-340; 
miR-483-3p; miR-99a; 
miR-Plus-E1098 

Johnson et al., 
2005;  Dickey et al., 
2011; Koturbash et 
al., 2011; Surova et 
al., 2012 

Human 
normal 
fibroblasts  

let-7d; let-7e; let-7f; let-7g; let-7i; miR-
15a; miR-17-3p; miR-17-5p; miR-19b; 
miR-21; miR-26b; miR-142-3p; miR-
142-5p; miR-143; miR-145; miR-155; 
miR-663  

let-7a; let-7b; let-7d; 
miR-24; miR-155; miR-
222  

Simone et al., 2009 

Human 3-D 
airway 
model 
tissues  

 let-7a; let-7b; let-7c; let-
7d; let-7e; let-7f; let-7g; 
let-7i  

Tarasov et al., 2007 

Endothelial 
cell  

let-7g; miR-16; miR-20a; miR-21; miR-
29c  

miR-125a  Kraemer et al., 
2011 
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In another study, a differential 
genomic DNA response to radiotherapy 
was observed in TK6 and WTK1 cells 
through the modulation of maintenance 
and de novo methyltransferases in 
irradiated cells. Though, DNMT3A and 
DNMT3B were induced in both cells after 
radiation treatment, but, DNMT1 mRNA 
levels were increased in TK6 cells, while 
repressed in WTK1 cells. TET1, involved 
in the conversion of 5-methylcytosine (5-
mC) to 5-hydroxymethylcytosine (5-
hmC), was induced in both cells 
(Chaudhry and Omaruddin, 2012). It 
seems, the radiation exposure has a 
differential response in mammalian cells. 

It has been assumed that, a fine 
balance of DNA methylation is needed to 
ensure proper radiation responsiveness. 
Hypoacetylated and methylated genes 
are thought to be more sensitive to IR 
other than the genes within the highly 
ordered structure of heterochromatin 
and hyperacetylation (Bar-Sela et al., 
2007). Generally, chemoresistant tumors 
fail to respond to radiotherapy. Although, 
the mechanisms of cross resistance are 
not fully understood, but believed to be 
epigenetic in nature. In a study, MCF-7 
cells and their doxorubicin-resistant 
variant MCF-7/DOX cells were found to 
show a differential response towards IR, 
probably due to their dissimilar 
epigenetic status as in MCF-7/DOX cells, 
there were significant global DNA 
hypomethylation in comparison to the 
MCF-7 cells (Luzhna and Kovalchuk, 
2010). 

Loss of jmjd-5 results in 
hypersensitivity to IR (Gy 80-120) and in 
meiotic defects, which is associated with 
aberrant retention of RAD-51 (a 
commonly used marker of DSBs) at sites 
of double strand breaks (Amendola et al., 
2017). 

Radiation therapy, in 
combination with DNA 
methyltransferase (DNMT) inhibitors is 
straightforward since the use of latter 
class drugs offers greatly improved the 
targeting of DNA-protein complex (Bar-
Sela et al., 2007; Gravina et al., 2010). For 

an example, NSCLC cell lines when 
treated with abexinostat (a novel pan 
HDACi) and irradiation (0-6 Gy) in vitro 
in normoxia and hypoxia, enhanced 
radiosensitivity in a time-dependent 
manner, where abexinostat treated cells 
were found to increase radio-induced 
caspase dependent apoptosis and 
persistent DNA double-strand breaks 
associated with decreased DNA damage 
signalling and repair (Rivera et al., 2017). 

Conclusion 

Radiation insults from various 
sources are common phenomena. 
Irradiated cells may elevate the risk for 
genetic instability, mutation, and cancer. 
Radiation-induced bystander effect can 
develop cancer, even at low radiation 
doses. Therefore, adequate precautions 
should be taken during environmental, 
medical and other sources’ radiation 
exposure. 
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