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Abstract. Early colonization of plants in an area is influenced 
mostly by climatic, edaphic and phytogeographic factors. As 
arbuscular mycorrhizae (AM) was associated with early invasion 
of land plants on earth, AM may have some role in defining the 
first seral community in any land. Two riverbanks were selected 
to study their pioneer plant community structure with species 
composition and diversity, soil characters and arbuscular 
mycorrhizal association; and correlations among these factors. 
Species composition, diversity and richness indices, active AM 
association of early colonizing plant species, soil texture, 
moisture, pH and E.C in two river banks differed. Similarity 
index for plant species between the two communities was poor. 
Diversity and richness indices were high in K site while 
evenness was high in R site. AM colonization and spore density 
correlated highly with plant cover and frequency in both 
riverbanks. Soil moisture showed a strong negative impact on 
mycorrhization, soil organic carbon showed little. Soil pH 
showed varied correlation in different sites. Early colonizing 
plants in R site with silt-loam soil with high moisture level are 
found poorly mycotrophic or nonmycotrophic; though plant 
cover correlated highly with mycotrophy in both sites. Plants in 
sandy soil of K site are highly mycotrophic and with high 
arbuscular and vesicular colonizations. The distribution of 
frequency in R site is highly deviated from Raunkiuer’s 
frequency class; in K site it is rather stable. The soil condition is 
only key factor to determine plant composition and plant-
mycorrhizal relations influencing colonization of early seral 
community. 
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Introduction 

Succession of plant species in 
denuded land is influenced by a number 

of ecological factors of which climatic, 
edaphic factors and vegetation types of 
the adjacent region have a major role. 
Ecological habitat and plant 
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characteristics, including positive or 
negative interactions among plants 
(Maestre et al., 2003) mainly maintain 
the coexistence of plant species (Tilman, 
1988; Berendse, 1981). River banks or 
riverbeds harbor plant succession, often 
only first or second seral stages as the 
zones get inundated in every monsoon. 
The colonizers in first seral community 
also compete for establishment that may 
be favored by mycorrrizal association 
though they are also washed away with 
monsoon tides and have to advent and 
recolonise along with plant species. 

As soil biota comprises most of 
the earth’s biological stock and their 
diversity and play important role in 
ecosystem functioning (Fitter et al., 
2005), they have influencing role in 
succession too. Among the soil micro-
flora, the obligate endophyte, arbuscular 
mycorrhizal fungi (AMF) belonging 
Glomeromycota are widespread in 
natural ecosystems. They contribute to 
plant nutrition in absorbing less mobile 
nutrients especially phosphorus and 
micronutrients (Marschner and Dell, 
1994); active mostly in nutrient limited 
(Liu et al., 2007) dry soil (Augé et al., 
2016). AMF are beneficial to tropical 
plant species and ecosystems (Siqueira et 
al., 1998; Pasqualini et al., 2007; Zangaro 
et al., 2007). Their potential influence in 
enhancement of growth and biomass 
(Ghosh and Verma, 2006; Jha et al., 2012; 
Mayerhofer et al., 2013), plant nutrient 
content (Pasqualini et al., 2007), 
aggregation of soil particles and on plant 
diversity (Rillig, 2004) increased interest 
in AMF in recent years. Effects of AMF on 
plant-plant interactions though varied, 
Van Der Heidjen et al. (1998) and Van 
Der Heijden and Horton (2009) provided 
evidence that the mycorrhizal network 
ameliorate competition in natural 
ecosystems and diversity of AMF 
determines plant community structure 
as the response of each plant species 
vary to each AMF. AMF diversity is one of 
the major factor in maintaining plant 
biodiversity and ecosystem stability and 
function. Several studies showed that 

AMF alters plant community structure by 
affecting the relative abundance and 
diversity of plant species (Gange et al., 
1990; Sanders and Koide, 1994). AMF 
also affect plant community by the 
difference in growth responses of plant 
species to AM colonization, known as 
‘mycorrhizal dependency’ (Plenchete et 
al., 1983). A study revealed that 
mycorrhizal fungi increase plant 
competition as mycorrhizal networks 
were found to amplify size inequality 
originated from intraspecific competition 
(Ayres et al., 2006). 

Reports on the influence of 
Arbuscular mycorrhizae (AM) on 
coexistence of plant species in early seral 
community are less (Busby et al., 2011). 
Arbuscular mycorrhizae (AM) evolved 
with early land plants in Devonian period 
(Taylor et al., 1995). About 90% of total 
plants form symbiotic associations with 
AM. They are tolerant to a wide range of 
ecological conditions i.e. soil pH, 
temperature, nutrient gradients etc. so 
they are active in most ecosystems 
including riverbank, seashore, disturbed 
or polluted area. Host plant, edaphic and 
environmental factors, soil nutrients 
(Howler et al., 1987) influence AM 
colonization, spore population and AM 
species composition (Antibus and Lesica, 
1985). The network of external hyphae 
of AM can stabilize sand dunes, loams 
and disturbed soil (Tisdall, 1991). AM 
fungi play important role in maintaining 
and producing soil aggregates. The 
external mycelial networks entrap soil 
particles with a glycoprotein glomalin 
and produce water stable soil aggregates 
(Bedini et al., 2009). Dependency on AM 
also varies with plant species and plays a 
key role in formation of plant community 
structure in an area (Smith and Read, 
2008). AM may play a role in 
establishment of plant species in land 
without vegetation in transition zones 
like sand dune or tidal belt.  

We conducted the present study 
to assess the role of arbuscular 
mycorrhizae on early succession and 
establishment of plant species. The first 
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seral plant community in the banks of 
two rivers, Kansabati and Rupnarayan at 
Midnapur and Kolaghat (60 km apart in 
W.B., India) was studied for their plant 
cover, community structure and AM 
association. The edaphic conditions of 
the two banks were also studied to 
understand the relation of plant 
community and AM association better. 

Materials and methods 

Study site and sampling 
The study was conducted in bank 

of Kansabati River at Midnapur (22.30° N 
and 87.20° E) and Rupnarayan River at 
Kolaghat (22.31° N and 87.36° E) located 
in Midnapore District, West Bengal, 
India. The banks get inundated in each 
monsoon and bare from December to 
June. Here the dry summer (March to 
June) has an average temperature of 30 
°C with a maximum of 42 °C. In winter 
the average temperature is 18 °C (11 °C 
to 26 °C). Average rainfall is 110 cm (70-
460 cm). Most rainfall occurs within June 
to September. For plant vegetation study, 
20 quadrates (150 cm²) were plotted at 
random from water level to 10 m upward 
the bank (land get drowned in monsoon) 
and up to 2,000 m length alongside in K 
and R site. Rhizospheric soil samples 
with intact root system of each species 
from each site were collected in triplicate 
in labeled polythene bags. Sampling was 
done in March. 

Ecological study 
Frequency of distribution was 

studied and classified according to 
Raunkiauer (1934). Basal cover of plants 
was calculated by foliage cover charted 
on graph. Species Equitability index and 
Richness index (Margalef, 1968); 
Shannon’s Diversity Index (Shannon et 
al., 1963) was calculated. Similarity index 
of two sites were calculated as S = 100 x 
2C/(a+b); SJ = a/a+b+c (Jaccard, 1912); 
Ss= 2a/2a+a+b+c (Sørensen, 1948). 

Soil analyses 
Composite rhizospheric soil 

sample of each site was tested for 
particle size distribution (Buoycous, 
1962), EC and soil NPK from soil analysis 
kit in triplicate and. Composite soil 
sample from each species of both sites 
was tested for pH, moisture content 
(Jackson, 1973) and organic carbon 
content (Walkley and Black, 1934) in 
triplicate. Rhizospheric soil samples 
were air dried and preserved at 4 °C for 
further study of AM spore population. 

Mycorrhizal study 
Fine tertiary roots were collected 

immediately after collecting the root 
samples. Root samples were washed 
thoroughly, cut into 1 cm pieces and 
preserved in 50% alcohol. For 
mycorrhizal analyses roots were treated 
with 10% KOH solution at 90 °C for 45 
min. Then neutralized with 1% HCl and 
stained with 0.5% tryphan blue solution 
(Phillips and Hayman, 1970). AM 
colonization was calculated by the 
following formula: Colonisation % = 
Number of infected root pieces (1 cm) × 
100/Number of total root pieces. 

Vesicular and arbuscular 
colonization was calculated according to 
this formula with presence of them in 
roots. AM spores were isolated following 
wet sieving and decanting technique 
(Gerdemann and Nicholson, 1963) using 
sieves of 710 μ, 450 μ, 300 μ, 150 μ and 
53μ sieves in descending order. Spore 
density was calculated in 100 g air dried 
soil; spores identified according to the 
manual of Schenck and Perez (1987). 

Data analyses 
Data analyses were done by Excel 

and SPSS 10. 

Results 

Soil texture, E. C., range of pH, 
moisture content and organic carbon  
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content were differed in two riverbanks 
(Table 1, 2, 3). The soil texture in K bank 
is sandy loam with higher % of coarse 
sand while silty loam in R bank (Table 1) 
(Brady, 1984). The range of pH was 
acidic to neutral in K bank; in R bank it 
was mainly acidic. EC was higher in R 

bank than K bank. Soil available NPK, 
especially phosphorus was very poor in 
both sites, slightly high in R site. Soil 
moisture and organic carbon content 
were higher in R bank than K bank but 
differed in each plant rhizophere 
(Table 2, 3). 

 
 
 
Table 1. Soil texture in K bank is sandy loam with higher % of coarse sand while silty loam in R 
bank. 

River 
site 

Soil textute 
E.C 

me/100 g 
pH 

range 

Available 
Coarse 

sand 
fine 
sand Silt Clay N % P% K% 

K 53% 35% 10% 2% 0.63 + 0.03 5.6-7.2 0.0048 0.0016 0.0040 
R 8% 40% 46% 6% 0.88 + 0.02 5.5-6.3 0.0067 0.0033 0.0047 

 
 
 

The first seral plant community 
species composition was also markedly 
varied in two sites (Table 2, 3; Figure 1). 
In K site total number of species was 
twenty of which twelve had mycorrhizal 
association; while in R site out of total 
eighteen species only five was 
mycorrhizal. Species composition was 
exclusive in two sites, only three species 
were common, Cyperus compressus L., 
Cyanotis axillaries Roem and Schut, 

Alternanthera sessilis R. Br. These three 
species showed higher cover, frequency 
and AM colonization % in K site. 
Vegetation cover was 83% more in K 
bank than R bank. Area covered by 
mycorrhizal species was higher (85%) in 
K bank than R bank (60%). In R bank, 
most of the plant species are aquatic or 
wetland species belong to non-
mycotrophic families and showed 
colonization nil. 

 
 
 
 
 
Table 2. Species composition, covered area, frequency, AM status and soil conditions in riverbank 
of Rupnarayan. 

 
* Species common in both sites. 
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Table 3. Species composition, percentage of covered area, frequency, AM colonisation and spore 
density and soil conditions in riverbank of Kansabati. 

 
* Species common in both sites. 
 
 
 

 
Figure 1. Number of mycorrhizal and non- mycorrhizal plant species in river banks of Kansabati 
and Rupnarayan 
 
 

Some of the accepted non-
mycorrhizal species belonging to the 
Family Cyperaceae, C. amabilis, 
C. cuspidatus, Bulbostylis barbata and 
Mariscus squarrosus showed mycotrophy 
with vesicle and arbuscle in K site. In R 
bank 50% plant species are aquatic or 
semi-aquatic growing in soil with 

moisture level > 63%. In K bank, 35% are 
wetland species, rest of the vegetation 
grew within 16% to 63% soil moisture 
level; though plants growing in > 63% 
moisture showed better AM colonization 
in K site. Similarity indices within the 
two pioneer communities were very 
poor (Table 4). The species richness 
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index and diversity indices were higher 
in K site, while species evenness was 
higher in R site. Richness of mycotrophic 
species was more in K (60%) bank than 

R bank (33.6%) (Figure 1). Plant species 
with arbuscular and vesicular 
colonization was higher in K site 
(Figure 2). 

 
 
Table 4. Equitability, Richness, Similarity Indices of the two communities. 

 Equtability 
Index 

Richness 
Index 

Shannon’s 
Diversity Index 

Similarity Index 
Jaccard’s Sørensen’s Czechovski 

Kansabati 1.82 7.0 3.321 0.0857 0.1463 0.1071 Rupnarayan 2.21 6.55 2.886 
 
 
 

 
Figure 3. Distribution of frequency class in two communities. 
 
 
 

 
Figure 2. Arbuscular and vesicular colonization % in plants of two river banks vegetation. 
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Distribution of frequency class 

was near to Raunkiaer (A > B > C </=/> 
D < E) in K site (A > B < C < D < E) while it 
was highly deviated in R site (A < B < C < 
D > E) (Figure 3). Absence of A and 
highest C, E < D indicates highly unstable 
and disturbed community. Maximum 
species in E in the former indicates rapid 
transformation tendency to next seral 
community in more stable form. Relative 
frequency showed significantly high 
positive correlation with AM colonization 
and spore density in K site (Table 5). In R 
site relative frequency is in significant 
positive correlation with AM 
colonization; positive but not significant 

with spore density. Plant cover showed 
significantly high positive correlation 
with AM colonization and spore density 
in R site while in K site in significant 
positive correlation with AM 
colonization; positive but not significant 
with spore density. AM colonization and 
spore density showed significant positive 
correlation with soil pH in R site while 
significant negative correlation in K site. 
Soil moisture content was observed with 
significant negative correlation with 
mycotrophy in both sites. Soil organic 
matter and mycorrhizal association 
showed insignificant positive correlation. 

 
 
 
Table 5. Pearson’s coefficient correlation between AM colonisation and spore density and covered 
area, soil conditions in riverbank of Kansabati and Rupnarayan. 

Riverbanks  % area 
covered 

Relative 
frequency Soil pH 

Soil 
moisture 
content 

Soil 
organic 
content 

Kansabati Colonization % 0.56* 0.92* - 0.51* - 0.83* 0.09 
Spore density 0.43 0.80* - 0.39 - 0.71* 0.06 

Rupnarayan Colonization % 0.81* 0.51* 0.59* - 0.59+ 0.05 
Spore density 0.82* 0.43 0.58* - 0.63* 0.1 

* Significant at P < 0.05. 
 
 
 
Discussion 

Though under same climate and 
phyto-geography, the soil properties of 
the two sites differed for the nature of 
rivers, and some of the soil properties 
have influenced the pioneer vegetation 
and their mycotrophy in two sites. The 
soil texture, pH, moisture specially had a 
role in selection of both plant and fungal 
species. The major differences between 
the two communities are in frequency 
class distribution, species diversity, plant 
cover, richness and equitability indices. 
Plant cover, frequency, poor similarity 
indices are directly related to mycotrphy. 
In previous study positive correlation 
within host and fungus was found to 
increase plant diversity in a community 

(Zang et al., 2014); here, though 
correlation is positive in both cases, plant 
composition of two sites varied much. In 
same phosphorus gradient plants 
differed in colonization pattern that was 
contrary to findings of Gosling et al. 
(2013) and following the concept of plant 
preference of Van Der Heijden et al. 
(1998). 

Comparatively high silt, EC, 
moisture and NPK (slightly) in soil of R 
site may have favored more wetland non 
mycorrhizal plant species. The AM 
community also differed in the sites. 
According to Collins and Foster (2009), 
phosphorus gradient select the AM 
microflora, as the gradient here not differ 
more; other soil characters may also be 
responsible. But mycorrhization is 
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strongly correlated with plant cover and 
frequency of species that undoubtedly 
strengthen the essential role of 
mycorrhizae in establishment of plant 
species in pioneer community. 

Plants in wet soil have least 
tendency to associate with AM. 
Terrestrial species showing colonization 
percentage poor or zero (O. brachiata) in 
this wet soil was found highly 
mycotrophic growing in dry land in 
previous study (Ghosh and Verma, 
2000). Parthenium show intensive 
colonization and sporulation in most 
types of soil condition that is possible 
cause of its widespread distribution. 
Excessive moisture and easy supply of 
nutrients in this soil may also have 
reduced the mycorrhizal dependency 
along with colonization in host plants. As 
predicted by the functional equilibrium 
model (Johnson et al., 2003), in soils with 
sufficient phosphorous, relative 
allocation to arbuscules and extraradical 
hyphae generally reduced by nitrogen 
enrichment. 

AMF distribution is patchy in 
wetlands over small spatial scales (Wolfe 
et al., 2007) and they are also found 
important drivers of plant community in 
such soils (Wolfe et al., 2006) in this 
study. As AM are obligate symbionts they 
can never survive without host plants. 
The riverbank soil is naturally low in AM 
propagules and obtained through runoff 
waters only. Though AM colonization is 
naturally poor in wetland, recent studies 
showed marshland species dominance 
depends on AM (Zhang et al., 2014). 

In K site with less moisture and 
sandy soil, vegetation is dominated by 
grasses which showed high colonization 
% and spore density too. Grasses are 
generally dominating early colonizer in 
sandy soils. The fibrous root system 
promotes AM association and production 
of spores; that act as sources of inocula 
to infect other plants rapidly. Though 
maximum dominance was by Saccharum 
officicnarum but maximum colonization 
and spore density was found in Aristida 
redacta. S. officicnarum has long 

penetrating roots and is an indicator of 
underground water. As A. redacta is the 
first colonizer of this loose dry soil 
probably so more dependent on AM for 
procuring nutrients and retention of 
moisture. Species with fibrous root 
system are capable to form soil 
aggregates are pioneers and dominant in 
early seral community in sand dunes 
(Piotrowisky et al., 2004). The fibrous 
root system also helps to increase spore 
density, thus good source for AM inocila 
in AM deficient soil. Sedges are also early 
colonizer in low nutrient moist soil; they 
are naturally non mycorrhizal, if 
mycorrhizal with very low and mainly 
with mycelial colonization. In this study 
also sedges are mostly non mycorrhizal 
except four species from K site. Ragupati 
and Mahadevan (2000) reported these 
species as non-mycorrhizal but Ghosh 
and Verma (2000) found Bulbostylis 
barbata and Mariscus squarrosus highly 
mycorrhizal in natural vegetation and 
here also these species form vesicle and 
arbuscle. Formation of arbuscle points 
indicates active AM symbioses (Cooke et 
al., 1993). The comparative lower pH in 
drier parts also increased colonization as 
AM favor nutrient poor acidic soil 
(Davies et al., 1983). Low fertility of soil 
especially phosphate deficiency 
encourages mycorrhizal colonization in 
general (Mosse, 1973). However, 
Bethlenfalvay et al. (1988) suggested 
that root colonization is increased in 
drought stressed plants because of low 
phosphorus in soil and AM association is 
more needed for phosphorus uptake. 
Mycorrhizal benefit is usually greater 
when plants are P (Jin et al., 2016) for 
growth and biomass enhancement of 
host. Relatively poor availability of 
phosphorus in K site than R site may 
have negatively influenced in 
colonization but not dependency as 
predicted from correlations in R site. 

In R site soil AM spores of six 
different species of Glomus only was 
found with diameter range - 30-310 μm, 
dominated by. G. intraradices and 
G. microaggregatum. K site contained 

https://www.frontiersin.org/articles/10.3389/fpls.2016.01084/full#B49
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only three Glomus species, Glomus 
fasciculatum, G. deserticola and 
G. microaggregatum along with 
Acaulospora scobriculata, A. spinosa, 
A. bireticulata, Scutellospora nigra and 
two Gigaspora species; total nine AMF. It 
should be noted that these AMF species 
also succeeds with plants in the few 
months as the sites get inundated every 
year. So these plants or total ecosystem 
have a choice for these AMFs too. Plant 
species vary in the degree of response to 
AMF species has important implications 
for growth of individual plant species 
(Ghosh and Verma, 2006). In turn, this 
will affect a plant’s ability to coexist with 
other plant species in a community, 
Species composition of arbuscular 
mycorrhizal community has potential to 
control plant population and plant 
community (Van der Heijden et al., 1998; 
Van Der Heijden and Horton, 2009). 
Again, established mycorrhizal plant 
roots serve as important sources of 
inocula for initial nonmycorrhizal 
species, which may influence 
regeneration and contribute to patchy 
distributions of species within the 
community (Koide and Dickie, 2002). In 
wet soil the dominant plant species are 
predicted to support growth and survival 
of subdominant initial nonmycorrhizal 
species by providing mycorrhizal inocula 
(Mukherjee and Mandeep, 1998). 
According to Klironomos (2000), 
arbuscular mycorrhizae influence on the 
relationship between plant diversity and 
productivity that in the presence of AMF, 
productivity will saturate at lower levels 
of species richness because AMF increase 
the ability of plant species to utilize 
nutrient resources.  On the contrary, 
Plant communities can also affect 
diversity and community composition of 
AMF (Johnson et al., 2004). 

The soil texture is found also a 
factor to select AM and plant community 
both. Soil texture have role as hyphal 
network need soil porosity that is less in 
silt-loam soil. Such changes are 
important because they suggest an  
 

alteration in mycorrhizal functioning 
that, in turn, may impact plant 
community composition and ecosystem 
function. Dependency on AM decides the 
competitive ability and relationship 
among species in a plant community 
especially in nutrient poor soils. AM 
colonization enhances the 
photosynthetic efficacy and allocation of 
photosynthates in biomass and 
reproduction proper way (Goicoechea et 
al., 2014); specially, reduction of root-
shoot ratio channeling more to above 
ground biomass production (Veresoglou 
et al., 2012). AM association of plants 
also modify the rhizospheric bacterial 
community, inviting a lot beneficial and 
mycorrhiza helper bacteria and act 
synergistically in nutrient cycling 
(Marschner and Timonen, 2005). Though 
AM dependency can never be calculated 
with prescribed formulas in natural 
habitat, active colonization is evidenced 
from arbuscular colonizations. Thus 
dependency on AM of pioneer 
community may enhance the nutrient 
cycling and productivity that may define 
structure and stability of this community 
and of next seral communities. Early 
colonizers with high dependency thus 
can alter the species composition and 
interaction. 

Conclusion 

Plant composition and diversity 
indices were found influenced by both 
edaphic conditions and AM mycotrophy 
in two sites. AM communities in two sites 
also were influenced by edaphic 
conditions. AM colonization pattern 
differed. But plant cover or dominance 
was directly correlated with AM 
mycotrphy in both sites. 
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