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Abstract. The intense production of information demands 
coherent treatment of available bodies of theoretical knowledge. 
A critical revision of methods in use within research programs is 
essential to maintain an adequate ontology and to guarantee the 
particular epistemological position required by each research 
area. The theory of Phylogenetic Systematics was developed in 
multiple forms, resulting in hypotheses that may be widely 
incongruent. This reflects the crisis of present paradigm, and 
illustrates failures in present phylogenetic thinking. The aim of 
the study is to discuss characters and homology hypotheses 
based on Hennigian principles. We present samples from the 
most unresolved groups within the evolutionary history of the 
Metazoa: Annelida and Polychaeta. The main phylogenetic 
proposals appearing in the history of the Annelida, from 
morphological (living and fossilized organisms) to molecular 
approaches are discussed. We do not consider annelids and 
polychaetes to be monophyletic entities. Both taxa need more 
detailed comparisons with others groups, such as 
deuterostomes. According to our published opinions, Annelida 
and Polychaeta are placed at the base of the deuterostomes, and 
these worm-like organisms are ultimately the ancestors of the 
Enterocoela. Thus, in order to systematize the Metameria, we 
have regarded Annelida, Pleistoannelida, Lophotrochozoa and 
Protostomia as being paraphyletic taxa. 
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Introduction 

Characters and hypotheses of homology have been the subject of many definitions 
and are central to the development of phylogenetic systematics (Laubichler, 2000; 
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Wagner, 2001; Brooks and McLennan, 2002; De Pinna, 1991; Wiley and Lieberman, 2011; 
Assis, 2012; Nixon and Carpenter, 2012; Williams and Ebach, 2012; Brower and De Pinna, 
2012). We present a view on characters and homology, based on the system of the 
Annelida and Polychaeta. Attempts at the systematization of these taxa are mainly the 
results of morphological data (Rouse and Fauchald 1995, 1997; Almeida et al., 2003), and 
recently, of inputs from molecules (Colgan et al., 2006; Rousset et al., 2007; Struck et al., 
2011; Weigert et al., 2014). Our outlook has caused much repercussion on the systematics 
of annelids and on the phylogeny of the Metazoa. 

In order to identify in which epistemological context this situation occurs, it 
becomes essential to consider laws and theories within the natural sciences and, more 
specifically, within biology. Theoretical bodies are considered by scientists as 
representatives of a genuine theory, depending on the conceptualization of the theory or 
on the adopted law. Some influential positions (Hempel, 1948) consider that only natural 
laws legitimate theoretical bodies, while other conceptions admit broader degrees of 
axiomatic subjectivity, as a consequence of the plasticity inherent in the concept of “laws” 
as applied to the diversity of known natural phenomena (Dretske, 1977). The classical 
conceptualization of theory was based on the physico-mathematical model, adopted since 
the beginning of the scientific revolution, a theory becomes a set of statements organized 
deductively or axiomatically (Carnap, 1956). Yet, as considered by Beaty (1993), how 
concrete these theories or laws become, is a subject of discord even in physics, in the 
conception of cosmological contingency, for example. According to Martínez (2011), this 
conception establishes itself as a general metatheory, rather than being restricted to a 
single area of science, applying to any program of natural investigation. Paradoxically, this 
concept, that is not well supported, even within physics, originated proposals of 
axiomatization in several specific theories in the area of biology. Hennig (1966: 3) also 
tried to provide meaning for biology in terms of the laws of physics: 

If we arbitrarily designate only physical laws as “laws” in natural science, then we 
can agree that biology is a science of laws, a nomothetic science, insofar as it tries 
to analyze the stationary processes in their sharply individualized forms, in terms 
of physical regularities, and seeks to analyze causally the broad range of the 
processes of change in form. 

Hennig (1966) then defines biology as “a systematic science of ordering, in that it 
seeks to include the tremendous variety of individual organic forms in an ordered system”. 

Under this scenario, the importance of placing Phylogenetic Systematics within the 
natural sciences becomes explicit. As a science, Phylogenetic Systematics aims to describe 
the objects of scientific investigation and to establish theories and general laws, in order to 
explain, and perhaps predict, particular ev events (Hempel, 1965). As phrased by Hennig 
(1966: 2), “the peculiar place and significance of systematics in biology is clearly 
recognizable only if an account of the place of biology itself among the natural sciences is 
first presented”. The objects that systematics aims to explain, the existence or 
relationships of which are sought, are natural groups. The analysis of characters of 
organisms structure relationships among groups that inherited these characters. In the 
light of our knowledge on evolutionary biology, explanatory hypotheses are generated - 
homologies, transformation series, cladograms (Fitzhugh, 2009). As indicated by Hennig, 
“’order’ and ‘systematics’ in this sense, are not equivalent to description, but also include 
explanation and rationalization”. Phylogenetic Systematics is thus a scientific program, 
because it presents natural criteria for the ordination of diversity in biological systems. 
This ordination proceeds by analyzing the multidimensionality of characters present in 
semaphoront (temporal samples within the life cycles of an individual). Biological 
evolution justifies the procedures in a transtemporal dimension. The historical aspect of 
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the phylogenetic system permits direct extensions into diverse other systems that may 
belong in systematic biology. For this reason, Phylogenetic Systematics must represent the 
general reference system for biology. 

The phylogenetic method proposed by Hennig (1966), which revolutionized the 
history of comparative biology, establishes genealogical relationships among species 
based on homologous characters, named synapomorphies. After this proposition, many 
authors contributed to the development of phylogenetic methods, enhancing our 
comprehension of the evolutionary history of organisms. With the method of parsimony 
analysis, it has been possible to quantify information and detect characters responsible for 
incongruences in multiple phylogenetic trees (Farris, 1969, 1970; Kluge and Farris, 1969; 
Goloboff, 1996; Carpenter, 1988; Goloboff et al., 2008). The best procedures for selecting 
outgroups for comparisons with the studied ingroup have been devised (Mickevich, 1982; 
Donoghue and Cantino, 1984; Brooks and Wiley, 1985; de Queiroz 1985; Kluge and 
Strauss, 1985; Nelson, 1985; Clark and Curran, 1986; O’Grady and Deets, 1987; Mickevich 
and Lipscomb, 1991; Nixon and Carpenter, 1993; Grandcolas et al., 2005). Methods for 
coding and polarizing binary and multistate characters have been produced (Nelson and 
Platnick, 1982; Mickevich and Lipscomb, 1991; Wilkinson, 1995; Fitzhugh, 2006; 
Zeppelini, 2001, 2011). Recently, molecular characters have dominated the scene (Nixon 
and Carpenter, 2011), reflecting what we may interpret as the gradual establishment of 
the present scientific paradigm (Kuhn, 1970). This position now represents the 
standardized methodological model followed by the more important periodicals 
publishing scientific papers in this research area. To deviate from this program implies 
confronting established monopolies and defying the gatekeepers of science, the peer 
reviewers. 

The phylogenetic method (Hennig, 1966) unites natural groups (monophyletic 
taxa), are based on shared evolutionary novelties (synapomorphies), corresponding to a 
series of procedures deduced from the empirical knowledge of evolution (Wiley, 1981; de 
Pinna, 1991; Amorim, 2002; Wiley and Lieberman, 2011). Starting in the 1960s, a series of 
computational methods began to appear, originating especially from the papers of Kluge 
and Farris (1969) and Farris (1969, 1970), that furnished more rigorous methodological 
procedures for the reconstruction of phylogenetic trees. The main aim of tree 
reconstruction became the resolution of incongruence and the search for the single most 
parsimonious tree (Amorim, 2002). 

This change in the argumentative structure of phylogenetic analyses follows a 
general tendency in theoretical biology to incorporate a statistical philosophy (Pigliucci, 
2012). This stance only becomes problematical when it obfuscates other crucial points 
inherent in phylogenetic methods, which must be explicit in the analysis (Hennig 1966). 
These methods are fundamental for the structuring of the hypothesis in question. They 
become responsible for making the specific proposal open to testing and discussion by 
others, which characterizes the scientific debate. Theoretical pluralism, in which “different 
items of a same domain necessitate explanations in terms of different theories or 
mechanisms” (Beatty, 1995), is characteristic of biology. This is in opposition to the 
theoretical monism of the Newtonian tradition, which attempts to explain, in a 
reductionist form, a domain of phenomena with as few mechanisms as possible, and, in the 
best possible case, with a single mechanism (Martine, 2011). The standardization of the 
structure of phylogenetic analyses under a statistical bias, as well as corroborating the 
establishment of the dominant paradigm (Kuhn, 1970), reflects the methodological 
reductionism in which the statistical entities are considered more relevant for the 
development of theories in biology (Pigliucci, 2012). Phylogenetic analyses have likewise 
become subject to this statistical bias and reductionist stance. Such an outlook leads to 
conflicts with the qualitative method established by the Hennigian School. This tendency 
must be taken with caution. It is sensible to take into account the limitations of each 



122 De Assis and Christoffersen 
 

Braz. J. Biol. Sci., 2020, Vol. 7, No. 16, p. 119-147. 
 

method in practice, to avoid reckless proposals, and in order to produce that are more 
richly structured hypothesis from a theoretical point of view (Fang and Casadevall, 2011). 

The definition of characters and their states have been widely discussed in the 
literature (Nelson and Platnick, 1981; Wiley, 1981; Platnick, 1982; Pimentel and Riggins, 
1987; Farris, 1970; Wagner, 2001; Amorim, 2002; Brooks and McLennan, 2002; Zeppelini, 
2011). This discussion on the importance of the concept of a character and the choice of 
coding methods appears to have ended, particularly in phylogenetic reconstruction based 
on molecular data, where data are not further investigated, after quantification 
procedures. Genetic sequences permit the grouping by sites of genetic similarity. This is 
considered by some authors to represent “ontogenetic similarity” (Nixon and Carpenter, 
2011). Differences in character concepts introduce an additional level of ambiguity in 
phylogenetic analyses based on morphology (Scotland et al., 2003). 

In this paper, we stress the importance of defining characters in a phylogenetic 
context, such as in Wiley (1981: p. 116): 

A character is a feature of an organism that is the product of an ontogenetic or 
cytogenetic sequence of previous features, or a feature of a previously existing 
parental organism(s). Such features arise in evolution by modification of a 
previously existing ontogenetic, cytogenetic, or molecular sequence. 

This definition represents a transformational view of a character, reflecting the 
basis of homology. Although subjective, this definition stresses that characters must form 
transformational series of states in a phylogenetic scheme (Wiley 1981). Character states 
are observations or evolutionary steps of a trait, while characters represent a linked series 
of these character states (Fitzhugh, 2006). Wiley (1981) considers such differences in the 
definitions of characters and character states as merely semantic, but nevertheless 
recognizes that the codification of multistate characters represents the most important 
step in an hypothesis of phylogenetic relationships. 

In other words, a character may appear in a modified state in a particular group of 
organisms, representing a synapomorphy for this taxon, as defined by Hennig (1966). The 
different forms presented by a character permit us to hypothesize a transformation series 
(Nelson and Platnick, 1981; Zeppelini, 2001, Amorim, 2002). 

Discriminating a character with its modified states, that is, delimiting a 
transformation series, may be quite complex in phylogenetic reconstruction. This has led 
many authors to opt for a coding method known as binary coding. In this coding method, 
only two states appear: (0) absent (plesiomorphic), and (1) present (apomorphic). 
Sometimes a few multistate characters may be interspersed with the binary characters 
(Pleijel, 1995; Wilkinson, 1995). Binary coding is a “poorly defined” method, because only 
a single apomorphic state supports a taxon. Pleijel (1995) suggested that only such an 
“absent/present” coding method is sufficient to resolve phylogenetic relationships.  
However, this method fails to establish relationships among homologous states, such as 
recommended by Hennig (1966). Binary coding becomes purely phenetic, because it 
simply compares characters, without establishing relationships among them. It thus 
delimits groups by quantifying similarities, instead of referring to the expected outcome of 
evolutionary theory (Wiley, 1981; Wägele, 2004, 2005; Williams and Ebach, 2008; Kück 
and Wägele, 2016; Borkent, 2018). 

Recently, Mooi and Gill (2010) severely criticized the hypotheses of molecular 
phylogeny, inferring that they do not establish relationships between plesiomorphic and 
apomorphic character states, and thus are provoking a crisis in fish systematics in 
particular. Molecular data are subject to statistical methods, instead of seeking 
relationships of homology. A long time ago, it was demonstrated that molecular data can 
be dealt with in the same way as morphological data (Christoffersen et al., 2004). Many 
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molecular authors agree with Wägele (2004, 2005) that their approach is derived from 
global similarity. The implication is that present molecular methods are not Hennigian in 
outlook. Brower (2012) went further to explain that the phenetic component of molecular 
methods refers not only to “grouping by overall similarity”, but also to the conversion of 
data from the original matrix into a secondary matrix of pairwise differences, from which 
overall similarities are assessed. This has caused an increase in the rate of homoplasy of 
structures, instead of providing phylogenetic inferences (Källersjö et al., 1999). We may 
add that, of course, assessing pairwise differences also represents a phenetic approach for 
establishing relationships. 

Many concepts of homology have been proposed (Haszprunar, 1992; Hall, 1994; 
Laubichler, 2000; William, 2004; Szucsich and Wirkner, 2007; Nixon and Carpenter, 2011; 
Brower and de Pinna, 2012; Pavlinov, 2012). We accept a definition that summarizes 
homologous traits in an evolutionary context. We strive for methods that seek congruent 
patterns of common character origins and their evolutionary development. 

Nixon and Carpenter (2011) revised the concept of homology and proposed a 
global concept of homology. In that work, they clarify that homology is not a synonym of 
synapomorphy, and that synapomorphy includes plesiomorphy. This corresponds closely 
to Hennig’s original formulations of plesiomorphy, as representing relative concepts of 
homology. These authors also deduce that cladogram rooting inhances good hypotheses of 
homology (Nixon and Carpenter, 2011, p. 3, Figure 1), Homoplasies represent mistakes in 
phylogenetic analyses. Nixon and Carpenter (2011) also prefer to use phylogenetic 
homology, instead of homology based on ontogenetic similarity.  Finally, they derive the 
terms “hypotheses of homology” and “homology”, instead of the terms “primary 
homology” and “secondary homology”, as presented by De Pinna (1991). 

Brower and De Pinna (2012) disagreed with these authors on several accounts. 
The main objections were against the equivocal relations of homology and synapomorphy, 
and regarded the rooting of the tree in defining polarization.  For Brower and De Pinna 
(2012), homology is equivalent to synapomorphy, and rooting is important for 
establishing character directionality in homology hypotheses. Finally, these authors 
redefine homology, with which we agree (p. 9): 

Homology is the relationship among parts of organisms that provides evidence for 
common ancestry. 

We support the view on the application of the phylogenetic method from 
morphological characters proposed by Mooi and Gill (2010). We also agree with them 
when they point out that methods based on similarity have provoked serious problems in 
the systematization of fishes.  We must add that such problems are not restricted to fishes, 
but also apply to other groups, such as Annelida and Polychaeta. 

Brower and De Pinna (2012) have a point when they consider homology 
equivalent to synapomorphy, and when they stress that characters must be well defined 
and coded when presenting an hypothesis of homology. Characters and their states 
produce a reliable topology when hypotheses of homology are reasonable, and should not 
be changed by character quantification, such as when using multiple sequences of DNA. 
Molecular data should be added to morphological information only if the former are 
treated in the same way as morphological data. That is, when interpreted as 
plesiomorphies and apomorphies. 

The most relevant aspect in an investigation of genealogical relationship is the 
understanding of relationships among homologous traits and their integration into a 
general evolutionary scheme. A parsimony analysis should translate into a hierarchical 
pattern that reflects the evolutionary history of the group (Farris, 1969, 1970). 
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The only scientific approach available in biology for incorporating the tremendous 
variety of organic forms into an ordered system is Phylogenetic Systematics. This 
approach includes theory and methods that are compatible with Biological Evolution. 
Evolution is the process responsible for the production of biodiversity. For this reason, 
only Phylogenetic Systematics is adequate as the basis for the production of a general 
reference system for Biological Systematics. The present crisis of ample proportion 
characterizing incongruences among available hypotheses regarding taxon composition 
and relationships can only reflect methodological inconsistencies in the dominant 
phylogenetic paradigm. Conflicting classifications demand restructuring of theoretical and 
methodological priorities in phylogenetic research. Such restructuring must arise from a 
change in the dominant paradigm, still couched in pre-Hennigian Neodarwinism. In times 
of increasing information output, more attention is necessary for considerations of the 
adequacy of methods and their congruence with the underlying available evolutionary 
theory. 

Annelida and Polychaeta as samples 

Annelida, traditionally divided into Polychaeta and Clitellata, is one of the largest 
groups of marine invertebrates, with circa of 16,500 described species (Blake, 1997). 
Annelids occur in several environments, from marine areas, limnetic zones, and terrestrial 
habitats (Struck, 2011; Struck et al., 2011). 

Annelids present a great diversity of morphological characters, and this may be the 
reason why phylogenetic relationships of the Annelida or in the vicinity of the Annelida 
represents one of the most unresolved portions within the evolutionary history of the 
Metazoa (Rouse and Pleijel, 2001, 2007; Purschke et al., 2014; Parry et al., 2016; Chen et 
al., 2020). 

In evolutionary history, proposals for the systematization of Annelida and 
Polychaeta have also caused confusion for present classification. At the same time, 
previous Hennigian proposals based on morphology, when not compatible with the latest 
overall similarity approaches, have been rejected (Rouse and Fauchald, 1995, 1997; Eibye-
Jacobsen and Nielsen, 1997; Westheide, 1997; Westheide et al., 1999; Rouse and Pleijel, 
2001; Purschke, 2002; Almeida et al., 2003; Bartolomaeus et al., 2005; Parry et al., 2016). 

One of the first phylogenetic proposals presented for the Annelida is derived from 
the hydrostatic theory of Clark (1964). In this theory, the basic function of the coelom is to 
serve as a hydrostatic skeleton, through metameric subdivision of the coelom by septum 
that enable the organisms burrow into sediments faster or in a more powerful way. 
Subsequently, Clark (1969) established the origin of the parapodium as an evolutionary 
novelty of polychaetes, and Clitellata was placed at the base of the tree. Furthermore, in 
this proposal, the Annelida (with ancestors lacking segmented appendages), arise from 
articulated ancestors, becoming the sister group of the Arthropoda, although the legs of 
arthropods are not considered homologous to the parapodia of polychaetes (Figure 1). 

Fauchald (1974) builds further on the original proposal of Clark (1964). His 
scheme is similar to the phylogenetic tree of Clark. He speculates that the stem species of 
Annelida have no parapodia, and thus the parapodia must have appeared later (Figure 2). 
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Figure 1. Phylogenetic scheme for Annelida, illustrating the origin of parapodia in polychaetes. 
Clitellates are in the base of the annelids, exemplifying the Hydrostatic Theory of Clark (1969). In 
this theory, the basic function of the coelom is to serve as a hydrostatic skeleton. Note that 
Arthropoda is the sister-group of Annelida. (Modified from Westheide, 1997). 
 
 
 

 
Figure 2. Phylogenetic scheme of Annelida derived from polychaetes without parapodia. Clitellates 
are the sister-group of polychaetes, but the ancestral annelid does not have parapodia. Note that 
Arthropoda are the sister-group of Annelida. Scheme presented by Fauchald (1977). (Modified from 
Westheide, 1997). 
 
 
 

Christoffersen and Araújo-de-Almeida (1994) were the first to propose a 
phylogeny of the Enterocoela as a group derived from annelids, concomitantly questioning 
the monophyly of both Annelida and Polychaeta. They established the broader 
monophylum Metameria to include all polychaetes and the remaining descendants of their 
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common metameric ancestor. In this proposal, Pogonophora are the sister group of the 
Radialia and Deuterostomia (Figure 3). 
 
 
 

 
Figure 3. Phylogenetic scheme proposed for the basal groups of Enterocoela, enhancing 
relationships with sedentary polychaetes, pogonophorans, Radialia and Deuterostomia. In this 
proposal Polychaeta and Annelida are paraphyletic. Scheme presented by Christoffersen and 
Araújo-de-Almeida (1994). (Modified from Christoffersen and Araújo-de-Almeida, 1994). 
 
 
 

Rouse and Fauchald (1995) presented a phylogenetic scheme based on 
morphology that included the Platyhelminthes, Onychophora, Euarthropoda, Echiura, 
Mollusca, Sipuncula, Nemertea, Clitellata, Pogonophora, Vestimentifera, and Polychaeta. In 
this scheme, Clitellata, Pogonophora, Vestimentifera and Polychaeta appeared closely 
related, despite the low resolution among these groups (Figure 4). 
 
 
 

 
Figure 4. Phylogenetic scheme for the Articulata, with uncertain positions for Clitellata, 
Pogonophora, Vestimentifera, and Polychaeta (Modified from Rouse and Fauchald 1995). 
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Westheide (1997), based on of the parapodial structures and internal anatomy, 
proposed a classification in which Oligochaeta derived from errant polychaetes. The loss 
of cephalic and parapodial structures was interpreted as being a derived state in the 
Clitellata, a view that is contrary to previous proposals (Clark, 1969; Fauchald, 1974, 
1977) (Figure 5). 
 
 

 
Figure 5. Phylogenetic scheme proposed for the Annelida. Note that this is the first proposal 
indicating the loss of parapodia in Clitellata, which have derived from “Polychaeta”. In this scheme, 
the monophyly of the Polychaeta is indicated. Proposal of Westheide (1997) (Modified from 
Westheide. 1997). 
 
 

McHugh (1997) presented the first phylogenetic proposal based on DNA sequences 
and on the nuclear gene elongation factor-1α. In this analysis, the groups included were 
species of polychaetes, clitellates, echiurans, molluscs, nemerteans, nematodes, 
arthropods, pogonophores, and chordates. Pogophophorans, clitellates and echiurans 
appear among the sedentary polychaetes (Figure 6). 

Rouse and Fauchald (1997) proposed a cladistic classification of morphological 
characters, being the first to establish a phylogenetic scheme for the Annelida, including 
the Pogonophora as a family of Polychaeta - the Siboglinidae. This new taxon appeared as 
the sister group of Sabellariidae, Sabellidae, and Serpulidae (Figure 7). 

Almeida et al. (2003) proposed a taxon Metameria, which included the 
paraphyletic groups Annelida and Polychaeta. For these authors, Metameria includes four 
main lineages. 1 - Echiura, with a phylogenetic position that is still uncertain within 
Annelida (Metameria) (Nielsen, 2012; Eibye-Jacobsen and Nielsen, 1997; McHugh 1997). 
Recent morphological and molecular data support the old view that Sternaspidae may be 
the sister group of the Echiura (McHugh, 2000; Almeida and Christoffersen, 2001). Other 
authors include the Echiura among the Capitellida. 2 - Arthropoda or Ecdysozoa as a 
derived group of the Annelida, in which arthropodia originated from polychaete parapodia 
(Walton, 1927; Manton, 1978, Almeida et al., 2003), and the elytra of Aphroditiformia, are 
homologous to the dorsal plates of marine lobopodes (Dzik and Krumbiegel, 1989). These 
homologies are further detailed in Almeida and Christoffersen (2001) and Almeida et al. 
(2001, 2008). 3 - Clitellata, that is related to the Questidae (Almeida and Christoffersen, 
2001, Almeida et al., 2003; Garraffoni and Amorim, 2003; Christoffersen, 2007). 4 - 
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Pogonophora, that is closely related to the sedentary and tubicolous Owenia fusiformis, 
and the oligomeric animals (Radialia), these groups share similarities between the 
trocophora and tornaria larvae (Gardiner, 1978, 1979; Christoffersen and Araújo-de-
Almeida, 1994; Salvini-Plawen, 2000; Almeida and Christoffersen, 2001; Almeida et al., 
2003; Ivanova-Kazas, 2007) (Figure 8). These proposals were also considered by 
paleontologists, who derive the vertebrates from segmented worms (Conway Morris, 
2003a, b). 
 
 

 
Figure 6. Phylogenetic framework proposed by McHugh (1997) based on molecular data deriving 
from DNA sequences and from the nuclear gene elongation factor-1α.  (Modified from McHugh 
1997). 
 
 

Many papers on the phylogeny of Annelida and Polychaeta were y presented 
subsequently, that question the monophyly of both taxa Annelida and Polychaeta. These 
results favored the paraphyly of annelids and polychaetes, and thus remained incongruent 
with several morphological and molecular proposals (Eibye-Jacobsen and Nielsen, 1996; 
Westheide, 1997; McHugh, 1997, 2000; Almeida et al., 2003; Purschke 2000; Nielsen 
2012). 

The following genes were used in published molecular analyses: EF1α (McHugh, 
1997; 2000, Kojima, 1998), 18S rRNA (Bleidorn et al., 2003a, b), Histone H3, mLSU tRNA, 
and other gene fragments (Jennings and Halanych, 2005; Bleidorn et al., 2006), 18S rRNA, 
in combination with other gene fragments, such 28S rRNA, 16S rRNA, histone H3 or COI 
(Colgan et al., 2006; Rousset et al., 2007). Rousset et al. (2007) proposed a phylogeny for 
the Annelida based on combined molecular data, presenting two phylogenetic trees: one 
for the ensemble of complete data, the other for an ensemble of restricted data. However, 
the groups remain paraphyletic when compared to the proposal of Rouse and Fauchald 
(1997). Only a single order of Polychaeta is corroborated in this molecular work using 
multiple loci: the Amphinomida. 
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Figure 7. Scheme proposed by Rouse and Fauchald (1997) based on morphological data. In this 
proposal, Clitellata appear as the most basal group, from which the polychaetes derived. In this 
case, the cephalic appendages appear as evolutionary novelties. 
 
 
 

Phylogenomic papers presented the Annelida in a phylogeny of the Metazoa, 
positioning them between “Lophotrochozoa” and “Protostomia” as a natural group (Struck 
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et al., 2011; Kvist and Sidall, 2013; Weigert et al., 2014). Phylogenomics is the study of 
genetic mutations, while phylogenetics is the study of systematics relationships (Assis and 
Santos 2014). The objective of reconstructing the history and classification of present and 
past biodiversity, across multiple organizational levels, from semaphoront phenotypes 
and behaviours in a particular environment, solely from the geographical distributions of 
genes, is an untenable goal of phylogenomics. 
 
 
 

 
Figure 8. Scheme proposed by Almeida et al. (2003) based on morphological data. In this proposal, 
Clitellata appear as the sister group of the Questidae, and Owenia as the sister group of Enterocoela. 
Errantia polychaetes are placed basally. 
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Struck et al. (2011) reinstate the old and artificial taxa Errantia and Sedentaria, 
based on a phylogenomic analysis of the Annelida. Both groups are inconsistent with 
morphological data, and are discrepant when compared to previous proposals based on 
morphology (Christoffersen and Araújo-de-Almeida, 1994; Eibye-Jacobsen, 1994; Rouse 
and Fauchald, 1997; Westheide, 1997; Almeida et al., 2003). Weigert et al. (2014) further 
corroborated the results of Struck et al. (2011) (Figure 9). 
 
 
 

 
Figure 9. Scheme proposed by Weigert et al. (2014) based on molecular data. In this proposal, 
Errantia and Sedentaria were considered valid. Four families of polychaetes remained outside these 
two groups: Amphinomidae, Oweniidae, Chaetopteridae, Magelonidae, and Sipuncula (formally not 
an annelid). 
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Contrary to these insights, recent consensus views continue to place Annelida as a 
valid taxon among the Lophotrochozoa, even when their position remains uncertain in this 
large incongruous group. Such uncertainties remain due to the incongruence of large data 
sets combined quantitatively in morphological and molecular approaches (Halanych, 
2004). 

Bartolomaeus (1995, 1996), Meyer and Bartolomaeus (1997), and Bartolomaeus et 
al. (2005) produced an important series of papers on the ontogeny of the chaetae. These 
authors compared the uncini of several polychaete groups with the chaetae of the 
Pogonophora. They derived a phylogeny in which the clades Oweniida, Terebellida, 
Pogonophora and Sabellida are strictly related. They only fail to agree that polychaete 
annelids are also closely related to the deuterostomes. 

Although many papers attempted to justify the monophyly of the Annelida and 
Polychaeta, with hypotheses based on both morphology and molecules, the results remain 
incongruent when the tools for the establishment of primary homologies are used (De 
Pinna, 1991). The phylogenetic relationships proposed by Rouse and Fauchald (1995, 
1997) were unsatisfactory and did not gain consensus among researchers, although some 
authors find these results convincing (Rousset et al., 2007; Rouse and Pleijel, 2007). These 
problems become crucial for the understanding of the evolutionary history of the Metazoa, 
because Annelida (Polychaeta), Pogonophora and Deuterostomia remain the least 
resolved groups in the evolutionary history of animals. 

Starting in the 1980s, a confrontation occurred among researchers around of the 
world regarding the position of the Pogonophora in at least four pathways: 

1) As an independent phylum among the protostomes (Jones, 1985a, b; Southward, 
1975, 1999; Southward et al., 2002); 

2) As an independent phylum among the deuterostomes, related to the 
hemichordates (Johansson, 1937; Hyman, 1959; Ivanov, 1955a, 1955b, 1955c, 
1960, 1988; Siewing 1975; Malakhov et al., 1997; Ivanova-Kazas, 2007); 

3) As a family of polychaetes within the Annelida, the Siboglinidae (Rouse and 
Fauchald, 1995, 1997; Rouse, 2001; Schulze, 2003; Bartolomaeus et al., 2005; 
Pleijel et al., 2009); 

4) As a group placed between the paraphyletic protostomes and the monophyletic 
deuterostomes (Christoffersen and Araújo-de-Almeida, 1994; Almeida and 
Christoffersen, 2001; Winchell et al., 2002; Almeida et al., 2003; De Assis and 
Christoffersen, 2010). 

The reduction of the Phylum Pogonophora to a family of Polychaeta (Rouse and 
Fauchald, 1997) thus breaks an old evolutionary paradigm, which considers this taxon as 
belonging to the Deuterostomia (Gardiner, 1978, 1979; Christoffersen and Araújo-de-
Almeida, 1994; Salvini-Plawen, 2000; Almeida and Christoffersen, 2001; Almeida et al., 
2003). Some recent research accepts Pogonophora as a phylum closely related to 
hemichordates (Ivanov, 1960, 1988; Gardiner, 1978, 1979; Ivanova-Kazas, 2007), others 
now believe that these animals represent a family of polychaetes (Rouse and Fauchald, 
1997; Rouse, 2001), and a third group establishes these animals as a transitional group 
between annelids and deuterostomes (Christoffersen and Araújo-de-Almeida, 1994; 
Almeida and Christoffersen, 2001; Almeida et al., 2001; De Assis and Christoffersen, 2010). 

The phylogenetic relationships established by Rouse and Fauchald (1995, 1997), 
although still much used (Rousset et al., 2007; Rouse and Pleijel, 2007), do not represent a 
consensus view among researchers. The hypothesis of Rouse and Fauchald (1997) 
neglects the view that Annelida (Clitellata, Polychaeta, and Pogonophora) and related 
invertebrates represent the most unresolved node in the evolutionary history of the 
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Metazoa (Struck et al., 2011). The change in the status of the Phylum Pogonophora to the 
polychaete family Siboglinidae (Polychaeta) (Rouse and Fauchald, 1995, 1997) thus 
discontinues an evolutionary tradition in which this group shares a relationship with 
Enterocoela (Gardiner, 1978, 1979; Christoffersen and Araújo-de-Almeida, 1994; Salvini-
Plawen, 2000; Almeida and Christoffersen, 2001; Almeida et al., 2003). 

These antagonistic phylogenetic systematizations thus result from different 
phylogenetic proposals (contrast Rouse and Fauchald, 1997 with Almeida and 
Christoffersen, 2001). Note that Rouse and Fauchald (1997) advocate the monophyly of 
Annelida and Polychaeta, while Almeida and Christoffersen (2001) reinforce the 
paraphyly of both groups. The paraphyly of Annelida and Polychaeta was first proposed by 
Christoffersen and Araújo-de-Almeida (1994). 

The most recent proposal for the Annelida includes the taxa Oweniidae, 
Magelonidae, Chaetopteridae, Amphinomidae and Sipuncula at the base of the Errantia 
and Sedentaria (Weigert et al., 2014). Oweniidae was placed basally on the basis of 
deuterostome characters, such as a largely intraepidermal nervous system (Bubko and 
Minichev, 1972), a mitraria larva with monociliated epidermal cells, nephridia with 
deuterostome similarities (Smith et al., 1987; Smart and Von Dassow, 2009), and 
monociliated epidermal cells in the adults (Gardiner, 1978; Westheide, 1997; Salvini-
Plawen, 2000; De Assis and Christoffersen, 2010). The larvae of Magelona mirabilis 
(Magelonidae) likewise possess an epidermis made up of monociliated cells, according to 
Bartolomaeus (1995). The position of Chaetopteridae and Amphinomidae are not 
considered in that paper. The taxon Chaetopteridae is considered to have the body divided 
into four parts herein, but the phylogenetic position is considered unstable (Moore et al., 
2017). Other authors have no doubt that this is a sedentary group of polychaetes. 
Amphinomidae is an errant group of polychaetes, placed within Eunicida and related to 
Euphrosioidae (Rouse and Fauchald, 1997). Interestingly, the new proposal based on 
molecular data excludes these very significant taxa from the scenario just presented. This 
makes no sense for a proposal that regards annelids and polychaetes as being 
monophyletic taxa (Weigert et al., 2014). 

Parry et al. (2016) point out significant differences between analysis of 
transcriptomes as compared to results based on morphology and fossils. The phylogenetic 
relationships proposed by Parry et al. (2016) through parsimony analysis from 
morphological characters (recent and fossilized organisms), (Figure 10) had showed the 
taxa Chaetopterus (Chaetopteridae) and Owenia (Oweniidae) among the “sedentary” 
polychaetes, while Myzostoma (Myzostomidae), Eurythoe and Euphrosine (Amphinomidae) 
appeared within the monophyletic clade Aciculata, contrary to the proposal of Weigert et 
al. (2014). The above authors further demonstrated that Polychaeta, Scolecida, Sedentaria 
and Pleistoannelida were not supported in all analyses, which suggests that the annelid 
ancestral was a macroscopic and epibenthic animal, with aligned palps and prominent 
parapodial lobes with many capillary chaetae, and the secondary reduction of this complex 
body plan is widespread in numerous related taxa, what had caused confusion in annelid 
phylogeny using only morphological data from extant taxa. 
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Figure 10. Phylogenetic proposal based on Parry et al. (2016), based on morphological of extant 
and extinct organisms. The parsimony analysis showed that Aciculata is a monophyletic taxon in all 
analysis. This proposal suggests that the annelid ancestral was a macroscopic and epibenthic 
animal, with aligned palps and prominent parapodial lobes with many capillary chaetae (modified 
from Parry et al., 2016) Note that Chaetopterus and Owenia appeared between sedentary 
polychaetes, while Myzostoma within monoplyletic Aciculata. 
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Above we have present the available proposals for the systematization of the 
Polychaeta and Annelida produced along to the evolutionary history of the annelids. We 
also present our point of view, that is based on the main modified structures: a) palp 
evolution-the most basal palps are short and sensorial, and can be found in eunicid 
species, the majority of dorvilleids have long palps, but the they have a sensorial function, 
the spionids, chaetopterids, and magelonids present a pair of long palps, which are feeding 
and sensorial, multiple feeding and sensorial palps can be shown in Terebelliformia and 
Cirratuliformia, but they are disorganized structures (Figure 11). Besides, other 
characters, such as tagmatization and segment reduction, result in a compartmentalized 
body, modified larval trocophores are similar to the tornaria larvae, with multiple ciliated 
bands observed in oweniids, pogonophorans present an intraepithelial nervous system 
that is characteristic of Epineuralia (Oligomera + Chordata) (Salvini-Plawen, 2000). 
 
 
 

 
Figure 11. Phylogenetic proposal based on Almeida et al. (2003). The proposal indicated the 
evolution of the palps, which serve both for feeding and for breathing (A, Modified from Steiner and 
Amaral, 2000, B, Modified from Blake, 1997, C, D, E Modified from Glasby et al., 2000, F, Modified 
from Southward et al., 2011, G, Modified Temereva, 2000, H, Modified from Lester, 1985); 
gp: grooved palps; sp: sensorial palps. Illustrative figures without scales.   
 
 
 

Bright et al. (2013) sketched different pathways of larval development from the 
metatrochophore to the adult in frenulates and vestimentiferans. They showed a coelomic 
cephalic cavity in both taxa. In the trochophore larvae of polychaetes the head arises from 
micromeres of the first two quartets belonging to all four quadrants. These are then joined 
by the stomodeum, that arises from the micromeres of the 3rd quarter. The entire anterior 
region of the body, including the coelomic mesoderm and the secondary mouth, is derived 
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from cells belonging to quadrant B in pogonophores. Usually there is no coelom in the 
head of polychaetes, in contrast to pogonophores. The close relationship between 
pogonophores and polychaetes is derived exclusively on data from molecules (Ivanova-
Kazas, 2016). 

The hypotheses that consider deuterostomes as derived from protostomes have 
become more consistent with the study of ontogeny (Arendt and Nübler-Jung 1994, 1996, 
1997, 1999; Nübler-Jung and Arendt, 1999; Winchell et al., 2002). Homeotic genes 
demonstrate that these genes are responsible for the dorsoventral and anteroposterior 
body axes, as well the segmentation found in polychaetes, arthropods, and vertebrates 
(Mcginnis et al., 1984; Lawrence, 1990; François and Bier, 1995; Holley et al., 1995; Jones 
and Smith, 1995; Holland et al., 1997; Tautz, 2004; Brown et al., 2008). Studies comparing 
the cerebral cortex and the production of neurotransmitters in humans, fishes, and 
polychaetes, have discovered homologues for the formation of these neurotransmitters 
between polychaete worms and vertebrates deriving from a common ancestor (Tessmar-
Raible et al., 2007; Tomer et al., 2010; Sweeney and Luo, 2010). Arendt et al. (2004) found 
rhabdomeric photoreceptor cells and ciliated photoreceptor cells in the brain of the 
annelid Platynereis sp. These rhabdomeric photoreceptor cells are also  found in insects 
(arthropods), while ciliated photoreceptor cells are found in vertebrates. Later, Osorio 
(2011) found ciliated photoreceptor cells in the larva of Terebratalia (Brachiopoda). This 
demonstrates a homology relationship among the photoreceptor cells, and indicates that 
polychaetes have both types of cells. While arthropods have one type of cell (rhabdomeric 
photoreceptors), vertebrates have the other type (cilated photoreceptors), thus 
establishing a relationship of ancestry and descent of arthropods from polychaetes on the 
one side, and of vertebrates from polychaetes on the other. 

In these scenarios, we hope that the world scientists will be able to choose 
relationships that represent the best evolutionary scenario for the unresolved relationship 
of annelids and the others metazoan animals, or that some of them can show a convincing 
proposal of monophyly for this taxon. This is one more proof that molecular approaches 
are not producing understandable topologies for the larger and older animal groups, and 
are not resolving the systematics of problematic groups. Despite the importance of 
molecular data, we question the validity of these proposals, and the use of this tool for the 
proposition of phylogenetic scenarios. De Carvalho and Ebach (2009) similarly lamented 
the emphasis on quantitative analyses and the abstraction of characters and organisms 
alike as statistical values and models. 

In this case, the molecular approach has caused confusion and unwarranted 
restructuring of annelid systematics, such as has occurred in the phylogeny of fishes, 
diptera and others groups (Mooi and Gill, 2010; Borkent, 2018). 

Although many decades have passed and several hypotheses of relationships have 
been proposed, both with morphological and with molecular data, we recognize that 
annelid phylogeny has no present consensus, especially in the cases in which morphology 
(living and fossilized organisms) and molecular approaches remain dissociated (Bright et 
al., 2013; Ivanova-Kazas, 2016; Parry et al., 2016). The presence of similar chaetae in 
Brachiopoda, polychaetes, and clitellates (Storch and Welsch, 1972; Gustus and Cloney, 
1972; Orrhage, 1973; Lüter and Bartolomaeus, 1997), and nuchal grooves in Sipuncula 
(Adrianov et al., 2006), put into question the monophyletic status established for Annelida 
and Polychaeta. We are convinced of the paraphyly of annelids and polychaetes, based on 
the lack of exclusive and shared morphological characters in these groups. Homoplasy 
remains the last resource when we seek to interpret causal observations. Thus, we 
regarded Annelida, Pleistoannelida, Lophotrochozoa, and Protostomes as paraphyletic 
taxa. 

Finally, we return to Salvini-Plawen’s (2000) original question: What is 
convergent/homoplastic in Pogonophora? 
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Conclusion 

We conclude that genetic data are very important for the recognition of distinct 
populations, being a useful tool for the recognition of species, as performed in several 
molecular studies. In particular, we illuminate the case of species-complexes, where 
morphology is unable to distinguish valid subgroups (Wheeler, 2005; Álvarez-Campos et 
al., 2016; Budaeva et al., 2016; Saglam et al., 2016; Kara et al., 2020). For the hypotheses of 
phylogenetic relationships among larger groups, such as phyla, classes and orders, 
molecular data should however be avoided, even in the case of multiple genes. This is 
because present statistical methods access character similarities and differences, which 
are not adequate for the detection of hierarchical patterns in nature. Phylogeny without 
plesiomorphic character states clearly distinguished from true synapomorphies is not 
phylogeny, but only a single phenetic dendrogram based on general similarly. 
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